AtCoder Beginner Contest 359(ABCDEFG题)视频讲解

A - Count Takahashi

Problem Statement

You are given N N N strings.
The i i i-th string S i S_i Si ( 1 ≤ i ≤ N ) (1 \leq i \leq N) (1iN) is either Takahashi or Aoki.
How many i i i are there such that S i S_i Si is equal to Takahashi?

Constraints

1 ≤ N ≤ 100 1 \leq N \leq 100 1N100
N N N is an integer.
Each S i S_i Si is Takahashi or Aoki. ( 1 ≤ i ≤ N ) (1 \leq i \leq N) (1iN)

Input

The input is given from Standard Input in the following format:

N N N
S 1 S_1 S1
S 2 S_2 S2
⋮ \vdots
S N S_N SN

Output

Print the count of i i i such that S i S_i Si is equal to Takahashi as an integer in a single line.

Sample Input 1

3
Aoki
Takahashi
Takahashi

Sample Output 1

2

S 2 S_2 S2 and S 3 S_3 S3 are equal to Takahashi, while S 1 S_1 S1 is not.
Therefore, print 2.

Sample Input 2

2
Aoki
Aoki

Sample Output 2

0

It is possible that no S i S_i Si is equal to Takahashi.

Sample Input 3

20
Aoki
Takahashi
Takahashi
Aoki
Aoki
Aoki
Aoki
Takahashi
Aoki
Aoki
Aoki
Takahashi
Takahashi
Aoki
Takahashi
Aoki
Aoki
Aoki
Aoki
Takahashi

Sample Output 3

7

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int n;cin >> n;int res = 0;for (int i = 1; i <= n; i ++) {string s;cin >> s;if (s == "Takahashi") res ++;}cout << res << endl;return 0;
}

B - Couples

Problem Statement

There are 2 N 2N 2N people standing in a row, and the person at the i i i-th position from the left is wearing clothes of color A i A_i Ai. Here, the clothes have N N N colors from 1 1 1 to N N N, and exactly two people are wearing clothes of each color.
Find how many of the integers i = 1 , 2 , … , N i=1,2,\ldots,N i=1,2,,N satisfy the following condition:
There is exactly one person between the two people wearing clothes of color i i i.

Constraints

2 ≤ N ≤ 100 2 \leq N \leq 100 2N100
1 ≤ A i ≤ N 1 \leq A_i \leq N 1AiN
Each integer from 1 1 1 through N N N appears exactly twice in A A A.
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N
A 1 A_1 A1 A 2 A_2 A2 … \ldots A 2 N A_{2N} A2N

Output

Print the answer.

Sample Input 1

3
1 2 1 3 2 3

Sample Output 1

2

There are two values of i i i that satisfy the condition: 1 1 1 and 3 3 3.
In fact, the people wearing clothes of color 1 1 1 are at the 1st and 3rd positions from the left, with exactly one person in between.

Sample Input 2

2
1 1 2 2

Sample Output 2

0

There may be no i i i that satisfies the condition.

Sample Input 3

4
4 3 2 3 2 1 4 1

Sample Output 3

3

Solution

具体见文末视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int n;cin >> n;std::vector<int> a(2 * n);for (int i = 0; i < 2 * n; i ++)cin >> a[i];int res = 0;for (int i = 1; i < 2 * n - 1; i ++)if (a[i - 1] == a[i + 1])res ++;cout << res << endl;return 0;
}

C - Tile Distance 2

Problem Statement

The coordinate plane is covered with 2 × 1 2\times1 2×1 tiles. The tiles are laid out according to the following rules:
For an integer pair ( i , j ) (i,j) (i,j), the square A i , j = { ( x , y ) ∣ i ≤ x ≤ i + 1 ∧ j ≤ y ≤ j + 1 } A _ {i,j}=\lbrace(x,y)\mid i\leq x\leq i+1\wedge j\leq y\leq j+1\rbrace Ai,j={(x,y)ixi+1jyj+1} is contained in one tile.
When i + j i+j i+j is even, A i , j A _ {i,j} Ai,j and A i + 1 , j A _ {i + 1,j} Ai+1,j are contained in the same tile.
Tiles include their boundaries, and no two different tiles share a positive area.
Near the origin, the tiles are laid out as follows:

Takahashi starts at the point ( S x + 0.5 , S y + 0.5 ) (S _ x+0.5,S _ y+0.5) (Sx+0.5,Sy+0.5) on the coordinate plane.
He can repeat the following move as many times as he likes:
Choose a direction (up, down, left, or right) and a positive integer n n n. Move n n n units in that direction.
Each time he enters a tile, he pays a toll of 1 1 1.
Find the minimum toll he must pay to reach the point ( T x + 0.5 , T y + 0.5 ) (T _ x+0.5,T _ y+0.5) (Tx+0.5,Ty+0.5).

Constraints

0 ≤ S x ≤ 2 × 1 0 16 0\leq S _ x\leq2\times10 ^ {16} 0Sx2×1016
0 ≤ S y ≤ 2 × 1 0 16 0\leq S _ y\leq2\times10 ^ {16} 0Sy2×1016
0 ≤ T x ≤ 2 × 1 0 16 0\leq T _ x\leq2\times10 ^ {16} 0Tx2×1016
0 ≤ T y ≤ 2 × 1 0 16 0\leq T _ y\leq2\times10 ^ {16} 0Ty2×1016
All input values are integers.

Input

The input is given from Standard Input in the following format:

S x S _ x Sx S y S _ y Sy
T x T _ x Tx T y T _ y Ty

Output

Print the minimum toll Takahashi must pay.

Sample Input 1

5 0
2 5

Sample Output 1

5

For example, Takahashi can pay a toll of 5 5 5 by moving as follows:

Move left by 1 1 1. Pay a toll of 0 0 0.
Move up by 1 1 1. Pay a toll of 1 1 1.
Move left by 1 1 1. Pay a toll of 0 0 0.
Move up by 3 3 3. Pay a toll of 3 3 3.
Move left by 1 1 1. Pay a toll of 0 0 0.
Move up by 1 1 1. Pay a toll of 1 1 1.
It is impossible to reduce the toll to 4 4 4 or less, so print 5.

Sample Input 2

3 1
4 1

Sample Output 2

0

There are cases where no toll needs to be paid.

Sample Input 3

2552608206527595 5411232866732612
771856005518028 7206210729152763

Sample Output 3

1794977862420151

Note that the value to be output may exceed the range of a 32 32 32-bit integer.

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int sx, sy, fx, fy;cin >> sx >> sy >> fx >> fy;int res = abs(sy - fy);if ((sx + sy & 1) && fx < sx || ((sx + sy) % 2 == 0) && fx > sx) {res += max(0ll, abs(sx - fx) - abs(sy - fy) >> 1);} else {res += max(0ll, abs(sx - fx) - abs(sy - fy) + 1 >> 1);}cout << res << endl;return 0;
}

D - Avoid K Palindrome

Problem Statement

You are given a string S S S of length N N N consisting of characters A, B, and ?.
You are also given a positive integer K K K.
A string T T T consisting of A and B is considered a good string if it satisfies the following condition:
No contiguous substring of length K K K in T T T is a palindrome.
Let q q q be the number of ? characters in S S S.
There are 2 q 2^q 2q strings that can be obtained by replacing each ? in S S S with either A or B. Find how many of these strings are good strings.
The count can be very large, so find it modulo 998244353 998244353 998244353.

Constraints

2 ≤ K ≤ N ≤ 1000 2 \leq K \leq N \leq 1000 2KN1000
K ≤ 10 K \leq 10 K10
S S S is a string consisting of A, B, and ?.
The length of S S S is N N N.
N N N and K K K are integers.

Input

The input is given from Standard Input in the following format:

N N N K K K
S S S

Output

Print the answer.

Sample Input 1

7 4
AB?A?BA

Sample Output 1

1

The given string has two ?s.
There are four strings obtained by replacing each ? with A or B:
ABAAABA
ABAABBA
ABBAABA
ABBABBA
Among these, the last three contain the contiguous substring ABBA of length 4, which is a palindrome, and thus are not good strings.
Therefore, you should print 1.

Sample Input 2

40 7
????????????????????????????????????????

Sample Output 2

116295436

Ensure to find the number of good strings modulo 998244353 998244353 998244353.

Sample Input 3

15 5
ABABA??????????

Sample Output 3

0

It is possible that there is no way to replace the ?s to obtain a good string.

Sample Input 4

40 8
?A?B??B?B?AA?A?B??B?A???B?BB?B???BA??BAA

Sample Output 4

259240

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 1e3 + 10, M = 11, mod = 998244353;int n, k;
string s;
int f[N][1 << M];bool check(int x) {string a, b;for (int i = 0; i < k; i ++)a += char((x >> i & 1) ^ 48);b = a;reverse(b.begin(), b.end());return a != b;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);cin >> n >> k >> s;s = ' ' + s;std::vector<int> avl;avl.push_back(0);for (int i = 1; i <= k; i ++) {std::vector<int> ok;while (avl.size()) {int tmp = avl.back();avl.pop_back();if (s[i] == '?') {ok.push_back(tmp), ok.push_back(tmp | (1ll << i - 1));} else if (s[i] == 'B') {ok.push_back(tmp | (1ll << i - 1));} else {ok.push_back(tmp);}}avl = ok;}for (auto v : avl)if (check(v))f[k][v] = 1;for (int i = k + 1; i <= n; i ++)for (int j = 0; j < 1ll << k; j ++)if (s[i] == '?') {if (check(j) && check(j >> 1)) f[i][j >> 1] = (f[i][j >> 1] + f[i - 1][j]) % mod;if (check(j) && check((j >> 1) | (1ll << k - 1))) f[i][(j >> 1) | (1ll << k - 1)] = (f[i][(j >> 1) | (1ll << k - 1)] + f[i - 1][j]) % mod;} else if (s[i] == 'B') {if (check(j) && check((j >> 1) | (1ll << k - 1))) f[i][(j >> 1) | (1ll << k - 1)] = (f[i][(j >> 1) | (1ll << k - 1)] + f[i - 1][j]) % mod;} else {if (check(j) && check(j >> 1)) f[i][j >> 1] = (f[i][j >> 1] + f[i - 1][j]) % mod;}int res = 0;for (int i = 0; i < 1ll << k; i ++)res = (res + f[n][i]) % mod;cout << res << endl;return 0;
}

E - Water Tank

Problem Statement

You are given a sequence of positive integers of length N N N: H = ( H 1 , H 2 , … , H N ) H=(H _ 1,H _ 2,\dotsc,H _ N) H=(H1,H2,,HN).
There is a sequence of non-negative integers of length N + 1 N+1 N+1: A = ( A 0 , A 1 , … , A N ) A=(A _ 0,A _ 1,\dotsc,A _ N) A=(A0,A1,,AN). Initially, A 0 = A 1 = ⋯ = A N = 0 A _ 0=A _ 1=\dotsb=A _ N=0 A0=A1==AN=0.
Perform the following operations repeatedly on A A A:

  1. Increase the value of $A _ 0$ by $1$. For $i=1,2,\ldots,N$ in this order, perform the following operation: If $A _ {i-1}\gt A _ i$ and $A _ {i-1}\gt H _ i$, decrease the value of $A _ {i-1}$ by 1 and increase the value of $A _ i$ by $1$.
For each $i=1,2,\ldots,N$, find the number of operations before $A _ i>0$ holds for the first time. ## Constraints

1 ≤ N ≤ 2 × 1 0 5 1\leq N\leq2\times10 ^ 5 1N2×105
1 ≤ H i ≤ 1 0 9 ( 1 ≤ i ≤ N ) 1\leq H _ i\leq10 ^ 9\ (1\leq i\leq N) 1Hi109 (1iN)
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N
H 1 H _ 1 H1 H 2 H _ 2 H2 … \dotsc H N H _ N HN

Output

Print the answers for i = 1 , 2 , … , N i=1,2,\ldots,N i=1,2,,N in a single line, separated by spaces.

Sample Input 1

5
3 1 4 1 5

Sample Output 1

4 5 13 14 26

The first five operations go as follows.
Here, each row corresponds to one operation, with the leftmost column representing step 1 and the others representing step 2.

From this diagram, A 1 > 0 A _ 1\gt0 A1>0 holds for the first time after the 4th operation, and A 2 > 0 A _ 2\gt0 A2>0 holds for the first time after the 5th operation.
Similarly, the answers for A 3 , A 4 , A 5 A _ 3, A _ 4, A _ 5 A3,A4,A5 are 13 , 14 , 26 13, 14, 26 13,14,26, respectively.
Therefore, you should print 4 5 13 14 26.

Sample Input 2

6
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000

Sample Output 2

1000000001 2000000001 3000000001 4000000001 5000000001 6000000001

Note that the values to be output may not fit within a 32 32 32-bit integer.

Sample Input 3

15
748 169 586 329 972 529 432 519 408 587 138 249 656 114 632

Sample Output 3

749 918 1921 2250 4861 5390 5822 6428 6836 7796 7934 8294 10109 10223 11373

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 2e5 + 10;int n;
int a[N], to[N], f[N];signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);cin >> n;stack<int> stk;for (int i = 1; i <= n; i ++) {cin >> a[i];while (stk.size() && a[stk.top()] < a[i]) stk.pop();if (stk.size()) to[i] = stk.top();stk.push(i);}for (int i = 1; i <= n; i ++)f[i] = f[to[i]] + (i - to[i]) * a[i], cout << f[i] + 1 << " ";return 0;
}

F - Tree Degree Optimization

Problem Statement

You are given a sequence of integers A = ( A 1 , … , A N ) A=(A_1,\ldots,A_N) A=(A1,,AN). For a tree T T T with N N N vertices, define f ( T ) f(T) f(T) as follows:
Let d i d_i di be the degree of vertex i i i in T T T. Then, f ( T ) = ∑ i = 1 N d i 2 A i f(T)=\sum_{i=1}^N {d_i}^2 A_i f(T)=i=1Ndi2Ai.
Find the minimum possible value of f ( T ) f(T) f(T).
The constraints guarantee the answer to be less than 2 63 2^{63} 263.

Constraints

2 ≤ N ≤ 2 × 1 0 5 2\leq N\leq 2\times 10^5 2N2×105
1 ≤ A i ≤ 1 0 9 1\leq A_i \leq 10^9 1Ai109
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N
A 1 A_1 A1 A 2 A_2 A2 … \ldots A N A_N AN

Output

Print the answer.

Sample Input 1

4
3 2 5 2

Sample Output 1

24

Consider a tree T T T with an edge connecting vertices 1 1 1 and 2 2 2, an edge connecting vertices 2 2 2 and 4 4 4, and an edge connecting vertices 4 4 4 and 3 3 3.
Then, f ( T ) = 1 2 × 3 + 2 2 × 2 + 1 2 × 5 + 2 2 × 2 = 24 f(T) = 1^2\times 3 + 2^2\times 2 + 1^2\times 5 + 2^2\times 2 = 24 f(T)=12×3+22×2+12×5+22×2=24. It can be proven that this is the minimum value of f ( T ) f(T) f(T).

Sample Input 2

3
4 3 2

Sample Output 2

15

Sample Input 3

7
10 5 10 2 10 13 15

Sample Output 3

128

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 2e5 + 10;int n;
int a[N], d[N];signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);cin >> n;for (int i = 1; i <= n; i ++)cin >> a[i];priority_queue<PII, vector<PII>, greater<PII>> heap;for (int i = 1; i <= n; i ++)d[i] = 1, heap.push({a[i] * (2 * d[i] + 1), i});for (int i = 1; i <= n - 2; i ++) {auto tmp = heap.top(); heap.pop();d[tmp.se] ++, heap.push({a[tmp.se] * (2 * d[tmp.se] + 1), tmp.se});}int res = 0;for (int i = 1; i <= n; i ++) res += d[i] * d[i] * a[i];cout << res << endl;return 0;
}

G - Sum of Tree Distance

Problem Statement

You are given a tree with N N N vertices. The i i i-th edge connects vertices u i u_i ui and v i v_i vi bidirectionally.
Additionally, you are given an integer sequence A = ( A 1 , … , A N ) A=(A_1,\ldots,A_N) A=(A1,,AN).
Here, define f ( i , j ) f(i,j) f(i,j) as follows:
If A i = A j A_i = A_j Ai=Aj, then f ( i , j ) f(i,j) f(i,j) is the minimum number of edges you need to traverse to move from vertex i i i to vertex j j j. If A i ≠ A j A_i \neq A_j Ai=Aj, then f ( i , j ) = 0 f(i,j) = 0 f(i,j)=0.
Calculate the value of the following expression:

$\displaystyle \sum_{i=1}^{N-1}\sum_{j=i+1}^N f(i,j)$.
## Constraints

2 ≤ N ≤ 2 × 1 0 5 2 \leq N \leq 2 \times 10^5 2N2×105
1 ≤ u i , v i ≤ N 1 \leq u_i, v_i \leq N 1ui,viN
1 ≤ A i ≤ N 1 \leq A_i \leq N 1AiN
The input graph is a tree.
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N
u 1 u_1 u1 v 1 v_1 v1
⋮ \vdots
u N − 1 u_{N-1} uN1 v N − 1 v_{N-1} vN1
A 1 A_1 A1 A 2 A_2 A2 … \ldots A N A_N AN

Output

Print the answer.

Sample Input 1

4
3 4
4 2
1 2
2 1 1 2

Sample Output 1

4

f ( 1 , 4 ) = 2 , f ( 2 , 3 ) = 2 f(1,4)=2, f(2,3)=2 f(1,4)=2,f(2,3)=2. For all other KaTeX parse error: Expected 'EOF', got '&' at position 17: …, j\ (1 \leq i &̲lt; j \leq N), we have f ( i , j ) = 0 f(i,j)=0 f(i,j)=0, so the answer is 2 + 2 = 4 2+2=4 2+2=4.

Sample Input 2

8
8 6
3 8
1 4
7 8
4 5
3 4
8 2
1 2 2 2 3 1 1 3

Sample Output 2

19

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 2e5 + 10, B = 448;int n;
int a[N], dep[N], idx[N], tot[N], cnt[N], acl[N][B + 10], id[N];
int f[N << 1][20], Euler[N << 1], pl[N], m, sub;
std::vector<int> g[N], pos[N], big;void dfs(int u, int fa) {Euler[ ++ m] = u, pl[u] = m;for (auto v : g[u]) {if (v == fa) continue;dep[v] = dep[u] + 1;dfs(v, u), Euler[ ++ m] = u;}
}
void dfs2(int u, int fa) {if (id[a[u]]) acl[u][id[a[u]]] ++;for (auto v : g[u]) {if (v == fa) continue;dfs2(v, u);for (auto i : big) acl[u][i] += acl[v][i];}for (auto i : big) {int sum = 0, res = 0;for (auto v : g[u]) {if (v == fa) continue;res += acl[v][i] * sum, sum += acl[v][i];}sub += res * dep[u] * 2;}if (id[a[u]]) sub += (acl[u][id[a[u]]] - 1) * dep[u] * 2;
}
void build() {for (int j = 0; j <= log2(m); j ++)for (int i = 1; i + (1ll << j) - 1 <= m; i ++)if (!j) f[i][j] = i;else {if (dep[Euler[f[i][j - 1]]] < dep[Euler[f[i + (1ll << j - 1)][j - 1]]]) f[i][j] = f[i][j - 1];else f[i][j] = f[i + (1ll << j - 1)][j - 1];}
}
int query(int l, int r) {int k = log2(r - l + 1);if (dep[Euler[f[l][k]]] < dep[Euler[f[r - (1ll << k) + 1][k]]]) return f[l][k];return f[r - (1ll << k) + 1][k];
}
int lca(int a, int b) {if (pl[a] > pl[b]) swap(a, b);return Euler[query(pl[a], pl[b])];
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);cin >> n;for (int i = 1; i < n; i ++) {int u, v;cin >> u >> v;g[u].push_back(v), g[v].push_back(u);}for (int i = 1; i <= n; i ++)cin >> a[i], pos[a[i]].push_back(i);dfs(1, -1), build();int res1 = 0, res2 = 0, tmp = 0;for (int i = 1; i <= n; i ++) {if (pos[a[i]].size() <= B) {for (int j = 0; j < idx[a[i]]; j ++)res2 += dep[lca(i, pos[a[i]][j])] * 2;idx[a[i]] ++;} else if (!id[a[i]]) id[a[i]] = ++ tmp, big.push_back(tmp);res1 += tot[a[i]] + cnt[a[i]] * dep[i];tot[a[i]] += dep[i], cnt[a[i]] ++;}dfs2(1, -1);cout << res1 - res2 - sub << endl;return 0;
}

视频题解

AtCoder Beginner Contest 359(A ~ G 题讲解)


最后祝大家早日在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/861268.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CMN-700(1)CMN-700概述

本章介绍CMN-700&#xff0c;这是用于AMBA5 CHI互连&#xff0c;且可根据需要定制的网格拓扑结构。 1. 关于CMN‐700 CMN‐700是一种可配置扩展的一致性互连网络&#xff0c;旨在满足高端网络和企业计算应用中使用的一致性网络系统的功率、性能和面积(PPA)要求。支持1-256个处…

学习入门 chatgpt原理 一

学习文章&#xff1a;人人都能看懂的chatGpt原理课 笔记作为学习用&#xff0c;侵删 Chatph和自然语言处理 什么是ChatGpt ChatGPT&#xff08;Chat Generative Pre-training Transformer&#xff09; 是一个 AI 模型&#xff0c;属于自然语言处理&#xff08; Natural Lang…

基于uni-app和图鸟UI的云课堂小程序开发实践

摘要&#xff1a; 随着移动互联网的快速发展&#xff0c;移动学习已成为教育领域的重要趋势。本文介绍了基于uni-app和图鸟UI框架开发的云课堂小程序&#xff0c;该小程序实现了移动教学、移动学习、移动阅读和移动社交的完美结合&#xff0c;为用户提供了一个便捷、高效的学习…

SR655 OCP3 网卡Legacy PXE 轮循设置

1、更改UEFI Boot Mode为UEFI&#xff0c;保存重启服务器&#xff0c;再次进入UEFI界面调整如下图例 更改如下所有网卡legacy 为PXE。后将Boot Mode 更改为legacy,保存退出。 如下图例操作依次更改所有网卡口 2、步骤1&#xff0c;更改Boot Mode 为Legacy保存退出重启服器后&…

Redis安装与使用

目录 1、介绍 1、redis的特点: 2、缓存 2、安装Redis 1、安装单机版redis 2、redis-cli命令参数 3、清空数据库的两种方式和作用域&#xff1a; 4、redis的增删查改命令 5、redis的查看所有分类命令 6、redis过期时间与控制键的行为 7、redis的相关工具 1、介绍 r…

2023 年度国家科学技术奖励公布

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…

文件批量重命名001到100 最简单的数字序号递增的改名技巧

文件批量重命名001到100 最简单的数字序号递增的改名方法。最近看到很多人都在找怎么批量修改文件名称&#xff0c;还要按固定的ID需要递增&#xff0c;这个办法用F2或者右键改名是不能做到的。 这时候我们可以通过一个专业的文件批量重命名软件来批量处理这些文档。 芝麻文件…

通过命令行配置调整KVM的虚拟网络

正文共&#xff1a;1234 字 20 图&#xff0c;预估阅读时间&#xff1a;2 分钟 在上篇文章中&#xff08;最小化安装的CentOS7部署KVM虚拟机&#xff09;&#xff0c;我们介绍了如何在最小化安装的CentOS 7系统中部署KVM组件和相关软件包。因为没有GUI图形界面&#xff0c;我们…

魔众一物一码溯源防伪系统——守护品牌,守护信任!

在这个充满竞争的市场上&#xff0c;如何确保你的产品不被仿冒&#xff0c;如何赢得消费者的信任&#xff1f;魔众一物一码溯源防伪系统&#xff0c;为你提供一站式解决方案&#xff0c;守护你的品牌&#xff0c;守护消费者的信任&#xff01; &#x1f50d;魔众一物一码溯源防…

java的字节符输出流基类、File Writer类和Buffered Writer类

一、字节符输出流基类&#xff1a;Writer 1.属于抽象类 2.常用方法 二、字节符输出流Flie Writer类 1.是writer类的子类 2.以字符为数据处理单元向文本文件中写数据 3.示例 4.实现步骤 三、BufferedWriter类 1.是Writer类的子类。 2.带有缓冲区 默认情况下&#xff0c…

第三天 哎 怎么也是在自学的路上越走越远 本科的实习 放荡不羁 今天的训练 我小心翼翼

const 指针 不可以改变的 不能修改的指向的对象 const 可以放在int*前也可以放后面 *指针 const 常量 可以一起读出来 区分 普通变量 和指针变量 普通变量和指针变量是编程中的两种基本类型&#xff0c;它们在内存中的表现和用途有所不同。下面是它们的区分和详细解释&#…

昇思25天学习打卡营第3天|onereal

前几天不能运行代码&#xff0c;经过排查是因为我的浏览器是搜狗的&#xff0c;换成Chrome问题解决了。按照提示学习了《应用实践/计算机视觉/FCN图像语义分割.ipynb》并且尝试运行代码&#xff0c;开始训练&#xff0c;最后看到图片变化。 网络流程 FCN网络的流程如下图所示&…

Power BI 插件 DAX Studio 安装配置

1&#xff0c;dax studio 下载地址 DAX Studio | DAX Studio 2&#xff0c;安装配置&#xff08;几乎是默认&#xff09; 3&#xff0c;使用方法 打开DAX studio 默认支持Power povit, PBI/SSDT ,Tabular server。先打开PBI再打开DAX studio &#xff0c;不然如果只打开Dax …

初识Java(二)

初识Java的main方法 1.1 main方法示例 public class world {public static void main(String[] args) {System.out.println("hello,world!");}}通过上述代码&#xff0c;我们可以看到一个完整的Java程序的结构&#xff0c;Java程序的结构由如下三个部分组成&#x…

从零开始学docker(四)-安装mysql及主从配置(一)

mysql MySQL是一个关系型数据库管理系统&#xff0c;由瑞典MySQL AB 公司开发&#xff0c;属于 Oracle 旗下产品。MySQL 是最流行的关系型数据库管理系统之一&#xff0c;在 WEB 应用方面&#xff0c;MySQL是最好的 RDBMS (Relational Database Management System&#xff0c;关…

线性代数基础概念:行列式

目录 线性代数基础概念&#xff1a;行列式 1. 行列式的定义 1.1 递归定义 1.2 代数余子式定义 1.3 几何定义 2. 行列式的性质 2.1 行列式等于其转置的行列式 2.2 交换两行或两列&#xff0c;行列式变号 2.3 将一行或一列乘以一个数 k&#xff0c;行列式乘以 k 2.4 将…

【Java】Java序列化和反序列化

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 # Java中的序列化和反序列化 在Java中&#xff0c;序列化是将对象的状态写入字节流的机制。它主要用于Hibernate…

【活动】搜维尔科技携Xsens邀您出席世界人工智能大会

展会介绍 由外交部、国家发展改革委、教育部、科技部、工业和信息化部、国家网信办、中国科学院、中国科协和上海市政府共同主办的世界人工智能大会&#xff08;WAIC&#xff09;&#xff0c;将于7月4日-7日在上海举行。围绕“以共商促共享 以善治促善智”主题&#xff0c;打造…

VNode是什么?

什么是VNode VNode的全称是Virtual Node,也就是虚拟节点.它是指一个抽象的节点对象&#xff0c;用于描述真实DOM中的元素。在前端框架中&#xff0c;通过操作VNode来实现虚拟DOM&#xff0c;从而提高性能。 VNode的本质 本质上是JavaScript对象,这个对象就是更加轻量级的对DOM…

越有水平的领导,越擅长用这3个字来管人,怪不得执行力强

越有水平的领导&#xff0c;越擅长用这3个字来管人&#xff0c;怪不得执行力强 第一个字&#xff1a;“实” 要想提高执行力&#xff0c;必须发扬务实、实干、刻苦勤勉的工作精神。纸上谈兵&#xff0c;夸夸其谈的事情少做&#xff0c;多行动&#xff0c;少说话。 沉浸在表面…