高质量数据不够用,合成数据是打开 AGI 大门的金钥匙吗?

编者按: 人工智能技术的发展离不开高质量数据的支持。然而,现有可用的高质量数据资源已日渐接近枯竭边缘。如何解决训练数据短缺的问题,是当前人工智能领域亟待解决的一个较为棘手的问题。

本期文章探讨了一种经实践可行的解决方案 —— 合成数据(Synthetic Data)。如 AlphaZero、Sora 等已初步证实了合成数据具备的巨大潜力。对于语言模型来说,虽然要生成高质量的合成文本存在一定难度,但通过优化现有数据、从多模态数据中学习等策略,或许能够大幅降低对新数据的需求量。

如果合成数据真的能解决训练数据匮乏的难题,其影响必将是极其深远的。文章进一步分析了可能产生的影响:如互联网行业可能会被重塑、反垄断审查可能进一步加强、公共数据资源会获得更多投资等。不过现在做出这些预测或许还为时尚早,我们需要保持冷静,耐心观察合成数据这一技术在未来会取得何种突破性进展。

本文直指人工智能发展面临的一大瓶颈 —— “高质量数据的日益枯竭”,并提出了一种有争议但值得探索的解决方案,极具启发意义。我们后续会持续关注这一技术领域的最新进展,敬请期待!

作者 | Nabeel S. Qureshi

编译 | 岳扬

在这里插入图片描述

大语言模型是在海量数据上完成训练的,数据集规模堪比众多图书馆的藏书总和。然而,如果有一天我们用尽了所有可用的数据,该怎么办呢?图片来源:Twitter[1]

01 数据不够用?

现代大语言模型(LLMs)的一个关键事实可概括总结为:数据为王。人工智能模型的行为很大程度上取决于其训练所用的数据集;其他细节(诸如模型架构等),只是为数据集提供计算能力的一种手段。拥有一份干净的、高品质的数据集,其价值不可估量。[1]

数据的重要地位在人工智能行业的商业实践(AI business practice)中可见一斑。OpenAI 近期宣布与 Axel Springer、Elsevier、美联社及其它内容出版商和媒体巨头达成数据合作;《纽约时报》(NYT)最近起诉 OpenAI,要求停用利用 NYT 数据训练的 GPT 模型。与此同时,苹果公司正以超过五千万美元的价格,寻求与内容出版商(publishers)的数据合作。在当前的边际效益(译者注:边际效益(Marginal Benefit)是一个经济学概念,指的是在增加一单位的某种投入(如生产中的劳动力、原材料或者服务中的员工时间)时,所获得的额外收益或价值的增加。)下,模型从更多数据中获取的利益远超单纯扩大模型规模带来的收益。

训练语料库(training corpora)的扩容速度令人咋舌。世界上首个现代 LLM 是在维基百科这一知识宝库上训练完成的。GPT-3 在 3000 亿个 tokens(包括单词、词根或标点等)上进行训练,而 GPT-4 的训练数据量更是达到了惊人的13万亿个 tokens 。自动驾驶汽车是在数千小时的视频录像资料中学习、掌握驾驶技巧的;在编程辅助方面,OpenAI 的 Copilot,依托的是来自 Github 上数百万行人类编写的代码。

这种情况会一直持续下去吗?2022 年发表在 arXiv[2] 上的一项研究表明:我们正逼近耗尽高质量数据的边缘,这一转折点预计会在2023年至2027年间到来。 (这里所谓的“高质量数据”,涵盖了维基百科(Wikipedia)、新闻(news)、代码(code)、科学文献(scientific papers)、书籍(books)、社交媒体对话内容(social media conversations)、精选网页(filtered web pages)以及用户原创内容(如 Reddit 上的内容)。)

研究估计,这些高质量数据的存量约为 9e12 个单词,并且每年以 4 %到 5 %的速度增长。 9e12 具体有多大?举个例子,莎士比亚全集的字数约为 90 万(即9e5),相比之下,9e12 这个数量足足是莎翁作品字数总和的 1000 万倍之巨。

据粗略估计,要达到真正意义上的人类级人工智能(human-level AI),所需数据量可能是当前数据量的 5 到 6 个数量级之上,换言之,至少需要 10 万至 100 万倍的数据量扩充。

回顾一下,GPT-4 使用了 13 万亿个 tokens 。不过还有很多尚未充分开采的领域里潜藏着丰富的数据等待挖掘,比如音频与视频资料、非英语数据资料、电子邮件、短信、推特动态、未数字化的书籍,以及企业私有数据。通过这些渠道,我们或许能再获得比目前有用数据多 10 倍甚至 100 倍的数据,然而,要再获得多 10 万倍的数据却如同天方夜谭。

一句话,我们手中的数据还远远不够

除此之外,还有一系列现有的不利因素可能让获取优质数据变得更加棘手:

  • 那些依赖用户来生成内容(User-generated content, UGC)的网站,比如Reddit、Stack Overflow、Twitter/X等,纷纷关上了免费获取数据大门,对数据使用权开出了天价的的许可费。
  • 作家、艺术家,甚至像《纽约时报》这样的媒体巨头,都在维权路上高歌猛进,抗议其作品未经许可就被大语言模型拿去“学习”。
  • 有人担忧,互联网正逐渐被大语言模型生成的低质内容所淹没,这不仅可能引发模型的“drift”(译者注:在模型持续学习或微调的过程中,如果新增数据质量不高,可能引导模型产生不理想的变化。),还会直接拉低模型响应的质量。

02 合成数据:超级智能的新曙光?

基于前文的分析,我们或许会得出一个比较悲观的结论:我们目前拥有的数据不足以训练出超级智能(superintelligence)。然而,现在做出这样的判断未免操之过急。解决这一问题的关键可能就在于合成数据的创造——即机器为了自训练(self-training)而自主生成的数据。

尽管听上去像是天方夜谭,但事实上,一些前沿的现代 AI 系统都是通过合成数据训练出来的:

  • 专攻棋类的 AlphaZero[3] 就是使用合成数据训练出来的。具体而言,AlphaZero 通过与自身对战来生成数据,并从这些对局中汲取教训,不断优化策略。(这种数据之所以被称为合成数据,是因为它完全不需要借鉴真实人类的棋局记录。)
  • 再来看看 OpenAI 的最新成果之一 —— Sora[4],这款视频生成模型能够依据简单的文字指令,创造出长达 1 分钟的虚拟视频。它的训练很可能是基于电子游戏引擎(大概率是Unreal Engine 5)生成的合成数据。也就是说,Sora 不仅通过 YouTube 视频或现实世界的电影来学习,游戏引擎构建的虚拟环境同样成为了它的学习素材。

所以,这项技术已在棋类博弈与视频生成应用中得到了证实;真正的问题在于它能否同样适用于文本处理。 在某些方面,制作供训练使用的高质量视频数据,比生成文字训练数据容易得多:只需一部 iPhone,就能拍摄视频捕捉现实生活的真实面貌。然而,要想让合成的文本数据成为有效的训练数据,它必须是高质量、有趣的,而且在某种意义上是 “真实的”。

关键的一点是,创造有价值的合成数据,不仅仅就是从无到有的创作文本那么简单。比如,一份最新发表的论文[5](2024年1月)指出,利用大语言模型改进抓取到的网络数据的表达方式,不仅能优化训练效果,还能提升训练效率。有时,仅通过筛选并移除数据集中质量最差的数据(这一过程称为“数据集剪枝”),就能大幅增强大语言模型的表现。有一项针对图像数据的研究更是惊人地发现,要达到模型的峰值性能(peak model performance),甚至需要舍弃数据集中高达90%的非关键信息!

如今,我们已拥有能像孩童般从视频中观察与学习的大语言模型。当我们弄清楚如何获取更高质量的多模态数据(包括视频、音频、图像及文本)的技巧,我们可能会惊喜地发现,大语言模型填补其世界观缺失部分所需的训练数据量,远比原先设想的要少得多。

03 解决合成数据生成问题将带来的影响

  1. 攻克合成数据的生成这一难题将极大加速人工智能领域的进步:考虑到当前研究者们对合成数据开发的投入、解决这一问题的巨大动力以及这一难题在其他领域已取得的成功,我们有理由相信,在未来几个月至数年内合成数据的生成将取得重大进展,进一步推动 AI 技术的飞速发展。而这一方面的技术突破,很可能会被各大企业严密保护为商业机密。
  2. 互联网行业或将重塑,减少对广告的依赖程度:传统上严重依赖广告收入的互联网企业,可能转向一种全新的商业模式,聚焦于训练数据的生成、创造。如 Reddit 这家近期申请 IPO(S-1) 的互联网巨头,其收入的 10%(即约 6000 万美元)来源于数据销售,且预计这一比例将持续上升。互联网上的用户数据源源不断(包括 reviews、tweets、comments 等),获取这些新鲜数据将非常有价值。如果这一点正确,各大企业将竞相采取措施,收集更多高价值的人工生成数据,助力人工智能模型的训练。
  3. 反垄断审查将趋严:独占如 Reddit、Elsevier 这类高价值数据源所引发的反垄断问题,预期将受到更为严格的审查。大型科技公司凭借其雄厚的财力和庞大的数据集,将进一步巩固其市场主导地位,加剧小规模企业参与竞争的难度。
  4. 开源项目可能会落后:监管部门需思考如何确保数据集的公平获取途径,可能会将数据集视作公共基础设施,或在特定条件下强制执行数据共享相关要求。构建更多高质量、经过筛选和整理的数据集,对学术界和开源社区维持竞争力尤为重要。各国政府也许会主动建立中央数据资源库,供所有大语言模型(LLM)开发者使用,从而帮助创造公平的竞争环境。不过短期内,开源项目开发者只能继续在 private labs (译者注:由私营企业或非公有实体运营的研究实验室,它们的工作成果、研发的技术和产生的数据往往被视为公司的知识产权,对外保密。)制作的优秀模型基础上对其进行微调,这意味着开源项目在可预见的未来仍可能落后于 private labs 。
  5. 数据被共享为公共资源:某些类型的数据具备公共属性,往往因投资不足而未得到充分开发。比如,一个汇集人类伦理道德偏好(human ethical preferences),通过对比分析形成的公共数据集,便是一个适宜公开资助或 AI 慈善项目投资的对象。类似的案例不胜枚举。

在科幻小说《沙丘》中,迷幻剂 melange(小说中俗称“香料”),被誉为银河系中的无价之宝。基于以上种种,埃隆·马斯克(Elon Musk)不久前在推特上的言论[6]——“数据即是香料(data is the spice.)”——便显得极为意味深长。AI 实验室都对此心领神会,正紧锣密鼓地“捣鼓”数据。

【注释】有一篇由 OpenAI 研究员撰写的题目为《the ‘it’ in AI models is the dataset(AI模型的核心在于数据集)》( https://nonint.com/2023/06/10/the-it-in-ai-models-is-the-dataset/ )的精彩博客文章,作者一针见血地指出:

“AI 模型的行为特征并非取决于其架构设计、超参数设置或是优化器算法的选择。真正起决定作用的是数据集本身,除此之外别无他物。所有的架构、参数和优化方法,归根结底都是为了更高效地处理数据,逼近数据集的真实表现。”

Thanks for reading!

Nabeel S. Qureshi is a Visiting Scholar at Mercatus. His research focuses on the impacts of AI in the 21st century.

https://nabeelqu.co/

END

参考资料

[1]https://twitter.com/dieworkwear/status/1757203606221340858/photo/2

[2]https://arxiv.org/pdf/2211.04325.pdf

[3]https://en.wikipedia.org/wiki/AlphaZero

[4]https://openai.com/sora

[5]https://arxiv.org/pdf/2401.16380.pdf

[6]https://twitter.com/elonmusk/status/1727813282377957433

本文经原作者授权,由 Baihai IDP 编译。如需转载译文,请联系获取授权。

原文链接:

https://digitalspirits.substack.com/p/is-synthetic-data-the-key-to-agi

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/860826.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何从零开始搭建成功的谷歌外贸网站?

先选择一个适合外贸网站的建站平台,如WordPress或Shopify。这些平台提供丰富的主题和插件,可以帮助你快速搭建和定制网站。设计网站时,注重用户体验,确保导航清晰、页面加载快速、移动端友好。确保网站的SEO优化。从关键词研究开始…

python turtle 001画两只小狗

效果图: 代码: pythonturtle001画两只小狗资源-CSDN文库 # 作者V w1933423import turtle # 导入turtle模块def draw_dogs():turtle.setup(800, 800) # 设置画布大小为800x800p turtle.Pen() # 创建一个画笔对象p.pensize(14) # 设置画笔大小为14p.…

11.xss之href输出

11.xss之href输出 后台配置文件中的代码 xss之href输出绕过:javascript:alert(1111) 直接代入a标签herf里面一样可以绕过htmlspecialchars 输入攻击代码 javascript:alert(1111)点击蓝色字体直接会弹窗,如图所示:

手机pdf删除怎么办?只需要2招,就可以快速恢复耶

PDF文件,这个我们日常生活中的常客,越来越受到大家的喜爱。但是,有时候我们会因为一时的疏忽或者清理手机内存而不小心删掉了重要的PDF文件,这可真是让人头疼啊!那么,这些pdf删除后,有没有什么好…

汇凯金业:预测黄金现货涨跌趋势的关键方法

在金融市场中,黄金现货作为一种重要的避险资产,价格波动受到全球经济、货币政策、市场情绪等多重因素的影响。要有效预测黄金现货的涨跌趋势,不仅需深刻理解这些因素,还需掌握一系列的分析技巧。本文将详细介绍一些关键的分析方法…

Kafka入门-基础概念及参数

一、Kafka术语 Kafka属于分布式的消息引擎系统,它的主要功能是提供一套完备的消息发布与订阅解决方案。可以为每个业务、每个应用甚至是每类数据都创建专属的主题。 Kafka的服务器端由被称为Broker的服务进程构成,即一个Kafka集群由多个Broker组成&#…

Java银系统/超市收银系统/智慧新零售/ERP进销存管理/线上商城/h5/小程序

>>>系统简述: 神点收银系统支持B2B2C多商户模式,系统基于前后端分离的架构,后端采用Java SpringBoot Mysql Mybatis Plus,前端基于当前流行的Uniapp、Element UI,支持小程序、h5。架构包含:会员端…

Mybatis插入操作 主键自增 返回成功 但是数据库没有数据

插入操作成功,消耗了一个主键,但是数据库没有看到相关数据。一般这种情况说明可能事务没有执行成功,事务回滚了。数据库操作要通过 ACID规则来约束事务,即原子性(Atomicity)、一致性(Consistenc…

项目里出现两个配置类继承WebMvcConfigurationSupport时,为什么只有一个会生效(源码分析)

为什么我们的项目里出现两个配置类继承WebMvcConfigurationSupport时,只有一个会生效。我在网上找了半天都是说结果的,没有人分析源码到底是为啥,博主准备讲解一下,希望可以帮到大家! 大家基本遇到过一种情况&#xff…

SQL Server 2022从入门到精通

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。…

ardupilot开发 --- 视觉伺服 篇

风驰电掣云端飘,相机无法对上焦 1.视觉伺服分类2.视觉伺服中的坐标系3.成像模型推导4.IBVS理论推导5.IBVS面临的挑战6.visp 实践参考文献 1.视觉伺服分类 控制量是在图像空间中推导得到还是在欧式空间中推导得到,视觉伺服又可以分类为基于位置(PBVS)和基…

Flink 状态管理

一、状态 流式计算分为无状态和有状态两种情况。无状态的计算观察每个独立事件,并且根据最后一个事件输出结果。例如,流处理应用程序从传感器接收温度读数,并在温度超过90度时发出告警。有状态的计算则会基于多个事件输出结果。例如&#xf…

一款开源、高颜值的AI物联网数据平台

介绍 AIOT人工智能物联网平台是一站式物联网开发基础平台,帮助企业快速实现数字化、精细化数据管理。核心系统为:物联网平台 数据中台(数据底座) AI。 同时支持文生图、语音合成等。大模型支持陆续也会慢慢开发。 物联系统介绍…

CLIP 计算过程图解

CLIP 计算过程图解 CLIP模型是OpenAI开发的一种多模态学习模型,它通过学习文本和图像之间的关联,实现了跨模态的语义理解。下面是CLIP模型计算过程的简化描述: 1 数据准备 选取包含文本和图像对的mini-batch,例如"big tab…

【快速入门】Transformer: Attention Is All You Need

Transformer → \to → 【知名应用】BERT (unsupervised trained Transformer) Transformer :seq2Seq model with self-attention, 后续会主要说明 self-attentionTransformer的组成: Self-attention是 Attention变体,擅长捕获数据/特征的内…

完整代码Python爬取豆瓣电影详情数据

完整代码Python爬取豆瓣电影详情数据 引言 在数据科学和网络爬虫的世界里,豆瓣电影是一个丰富的数据源。在本文中,我们将探讨如何使用Python语言,结合requests和pyquery库来爬取豆瓣电影的详情页面数据。我们将通过一个具体的电影详情页面作…

oracle11.2.0.4 RAC 保姆级静默安装(一) GI集群软件

一、响应文件准备 我们直接使用软件解压后的response文件夹中的响应文件模板进行修改 选择当前服务器的主机名,产品目录是在已存在的/u01/app目录基础上自动创建的无需提前创建oraInventory 按需选择语言,具体语言配置参考表格 一般rac默认选择安装类型为CRS_CONFIG 对应正…

借助 NGINX Unit 在服务器端使用 WebAssembly

原文作者:Liam Crilly of F5 原文链接:借助 NGINX Unit 在服务器端使用 WebAssembly 转载来源:NGINX 中文官网 NGINX 唯一中文官方社区 ,尽在 nginx.org.cn WebAssembly(缩写为 Wasm)可为 Web 应用领域提供…

C++ 教程 - 06 类的封装、继承、多态

文章目录 封装继承多态 封装 在private/protected 模块放置数据或者底层算法实现&#xff1b;在public块提供对外接口&#xff0c;实现相应的功能调用&#xff1b;类的封装案例 #include <iostream> using namespace std;// 类的定义 一般放在头文件 class Stu {public…

uniapp——上传图片获取到file对象而非临时地址——基础积累

最近在看uniapp的代码&#xff0c;遇到一个需求&#xff0c;就是要实现上传图片的功能 uniapp 官网地址&#xff1a;https://uniapp.dcloud.net.cn/ 上传图片有对应的API&#xff1a; uni.chooseImage方法&#xff1a;https://uniapp.dcloud.net.cn/api/media/image.html#choo…