C# Onnx Yolov8-OBB 旋转目标检测 行驶证副页条码+编号 检测,后续裁剪出图片并摆正显示
目录
效果
模型信息
项目
代码
下载
效果
模型信息
Model Properties
-------------------------
date:2024-06-25T10:59:15.206586
description:Ultralytics YOLOv8n-obb model trained on C:\Work\yolov8\config\dl-obb.yaml
author:Ultralytics
version:8.1.29
task:obb
license:AGPL-3.0 License (https://ultralytics.com/license)
docs:https://docs.ultralytics.com
stride:32
batch:1
imgsz:[1024, 1024]
names:{0: 'code'}
---------------------------------------------------------------
Inputs
-------------------------
name:images
tensor:Float[1, 3, 1024, 1024]
---------------------------------------------------------------
Outputs
-------------------------
name:output0
tensor:Float[1, 6, 21504]
---------------------------------------------------------------
项目
代码
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Linq;
using System.Windows.Forms;
namespace Onnx_Yolov8_Demo
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
string classer_path;
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
string model_path;
Mat image;
Mat result_image;
public string[] class_lables;
SessionOptions options;
InferenceSession onnx_session;
Tensor<float> input_tensor;
List<NamedOnnxValue> input_container;
IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
DisposableNamedOnnxValue[] results_onnxvalue;
Tensor<float> result_tensors;
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
textBox1.Text = "";
image = new Mat(image_path);
pictureBox2.Image = null;
}
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
button2.Enabled = false;
pictureBox2.Image = null;
pictureBox3.Image = null;
textBox1.Text = "";
Application.DoEvents();
//图片缩放
image = new Mat(image_path);
int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
Rect roi = new Rect(0, 0, image.Cols, image.Rows);
image.CopyTo(new Mat(max_image, roi));
float[] result_array;
float factor = (float)(max_image_length / 1024.0);
// 将图片转为RGB通道
Mat image_rgb = new Mat();
Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
Mat resize_image = new Mat();
Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(1024, 1024));
// Cv2.ImShow("resize_image",resize_image);
// 输入Tensor
for (int y = 0; y < resize_image.Height; y++)
{
for (int x = 0; x < resize_image.Width; x++)
{
input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
}
}
//将 input_tensor 放入一个输入参数的容器,并指定名称
input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
dt1 = DateTime.Now;
//运行 Inference 并获取结果
result_infer = onnx_session.Run(input_container);
dt2 = DateTime.Now;
// 将输出结果转为DisposableNamedOnnxValue数组
results_onnxvalue = result_infer.ToArray();
// 读取第一个节点输出并转为Tensor数据
result_tensors = results_onnxvalue[0].AsTensor<float>();
result_array = result_tensors.ToArray();
Mat result_data = new Mat(6, 21504, MatType.CV_32F, result_array);
result_data = result_data.T();
string s = result_data.Dump();
List<Rect2d> position_boxes = new List<Rect2d>();
List<int> class_ids = new List<int>();
List<float> confidences = new List<float>();
List<float> rotations = new List<float>();
// Preprocessing output results
for (int i = 0; i < result_data.Rows; i++)
{
Mat classes_scores = new Mat(result_data, new Rect(4, i, 1, 1));
string s2 = classes_scores.Dump();
OpenCvSharp.Point max_classId_point, min_classId_point;
double max_score, min_score;
// Obtain the maximum value and its position in a set of data
Cv2.MinMaxLoc(classes_scores, out min_score, out max_score,
out min_classId_point, out max_classId_point);
// Confidence level between 0 ~ 1
// Obtain identification box information
if (max_score > 0.5)
{
float cx = result_data.At<float>(i, 0);
float cy = result_data.At<float>(i, 1);
float ow = result_data.At<float>(i, 2);
float oh = result_data.At<float>(i, 3);
double x = (cx - 0.5 * ow) * factor;
double y = (cy - 0.5 * oh) * factor;
double width = ow * factor;
double height = oh * factor;
Rect2d box = new Rect2d();
box.X = x;
box.Y = y;
box.Width = width;
box.Height = height;
position_boxes.Add(box);
class_ids.Add(max_classId_point.X);
confidences.Add((float)max_score);
rotations.Add(result_data.At<float>(i, 5));
}
}
// NMS
int[] indexes = new int[position_boxes.Count];
CvDnn.NMSBoxes(position_boxes, confidences, 0.5f, 0.5f, out indexes);
List<RotatedRect> rotated_rects = new List<RotatedRect>();
for (int i = 0; i < indexes.Length; i++)
{
int index = indexes[i];
float w = (float)position_boxes[index].Width;
float h = (float)position_boxes[index].Height;
float x = (float)position_boxes[index].X + w / 2;
float y = (float)position_boxes[index].Y + h / 2;
float r = rotations[index];
float w_ = w > h ? w : h;
float h_ = w > h ? h : w;
r = (float)((w > h ? r : (float)(r + Math.PI / 2)) % Math.PI);
RotatedRect rotate = new RotatedRect(new Point2f(x, y), new Size2f(w_, h_), (float)(r * 180.0 / Math.PI));
if (rotate.Angle>90)
{
rotate.Angle = rotate.Angle-180;
}
rotated_rects.Add(rotate);
}
result_image = image.Clone();
for (int i = 0; i < indexes.Length; i++)
{
int index = indexes[i];
if (confidences[index]<0.7)
{
continue;
}
Point2f[] points = rotated_rects[i].Points();
//裁剪出需要的图片
Mat codeMat = GetRotateCropImage(image, rotated_rects[i]);
pictureBox3.Image = new Bitmap(codeMat.ToMemoryStream());
for (int j = 0; j < 4; j++)
{
Cv2.Line(result_image, (OpenCvSharp.Point)points[j], (OpenCvSharp.Point)points[(j + 1) % 4], new Scalar(0, 255, 0), 2, LineTypes.Link8);
}
Cv2.PutText(result_image, class_lables[class_ids[index]] + "-" + confidences[index].ToString("0.00"),
(OpenCvSharp.Point)points[0], HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 0, 255), 2);
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
}
textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
button2.Enabled = true;
}
private Mat GetRotateCropImage(Mat src, RotatedRect rect)
{
bool wider = rect.Size.Width > rect.Size.Height;
float angle = rect.Angle;
OpenCvSharp.Size srcSize = src.Size();
Rect boundingRect = rect.BoundingRect();
int expTop = Math.Max(0, 0 - boundingRect.Top);
int expBottom = Math.Max(0, boundingRect.Bottom - srcSize.Height);
int expLeft = Math.Max(0, 0 - boundingRect.Left);
int expRight = Math.Max(0, boundingRect.Right - srcSize.Width);
Rect rectToExp = boundingRect + new OpenCvSharp.Point(expTop, expLeft);
Rect roiRect = Rect.FromLTRB(
boundingRect.Left + expLeft,
boundingRect.Top + expTop,
boundingRect.Right - expRight,
boundingRect.Bottom - expBottom);
Mat boundingMat = src[roiRect];
Mat expanded = boundingMat.CopyMakeBorder(expTop, expBottom, expLeft, expRight, BorderTypes.Replicate);
Point2f[] rp = rect.Points()
.Select(v => new Point2f(v.X - rectToExp.X, v.Y - rectToExp.Y))
.ToArray();
Point2f[] srcPoints = new[] { rp[0], rp[3], rp[2], rp[1] };
if (wider == true && angle >= 0 && angle < 45)
{
srcPoints = new[] { rp[1], rp[2], rp[3], rp[0] };
}
var ptsDst0 = new Point2f(0, 0);
var ptsDst1 = new Point2f(rect.Size.Width, 0);
var ptsDst2 = new Point2f(rect.Size.Width, rect.Size.Height);
var ptsDst3 = new Point2f(0, rect.Size.Height);
Mat matrix = Cv2.GetPerspectiveTransform(srcPoints, new[] { ptsDst0, ptsDst1, ptsDst2, ptsDst3 });
Mat dest = expanded.WarpPerspective(matrix, new OpenCvSharp.Size(rect.Size.Width, rect.Size.Height), InterpolationFlags.Nearest, BorderTypes.Replicate);
if (rect.Angle<0)
{
Cv2.Flip(dest, dest, FlipMode.X);
}
boundingMat.Dispose();
expanded.Dispose();
matrix.Dispose();
return dest;
}
private void Form1_Load(object sender, EventArgs e)
{
model_path = "model/best.onnx";
classer_path = "model/lable.txt";
// 创建输出会话,用于输出模型读取信息
options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
// 创建推理模型类,读取本地模型文件
onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
// 输入Tensor
input_tensor = new DenseTensor<float>(new[] { 1, 3, 1024, 1024 });
// 创建输入容器
input_container = new List<NamedOnnxValue>();
List<string> str = new List<string>();
StreamReader sr = new StreamReader(classer_path);
string line;
while ((line = sr.ReadLine()) != null)
{
str.Add(line);
}
class_lables = str.ToArray();
image_path = "test_img/1.jpg";
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
}
private void pictureBox1_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox1.Image);
}
private void pictureBox2_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox2.Image);
}
SaveFileDialog sdf = new SaveFileDialog();
private void button3_Click(object sender, EventArgs e)
{
if (pictureBox3.Image == null)
{
return;
}
Bitmap output = new Bitmap(pictureBox3.Image);
sdf.Title = "保存";
sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp";
if (sdf.ShowDialog() == DialogResult.OK)
{
switch (sdf.FilterIndex)
{
case 1:
{
output.Save(sdf.FileName, ImageFormat.Jpeg);
break;
}
case 2:
{
output.Save(sdf.FileName, ImageFormat.Png);
break;
}
case 3:
{
output.Save(sdf.FileName, ImageFormat.Bmp);
break;
}
}
MessageBox.Show("保存成功,位置:" + sdf.FileName);
}
}
}
}
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Linq;
using System.Windows.Forms;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;Mat result_image;public string[] class_lables;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}button2.Enabled = false;pictureBox2.Image = null;pictureBox3.Image = null;textBox1.Text = "";Application.DoEvents();//图片缩放image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float[] result_array;float factor = (float)(max_image_length / 1024.0);// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(1024, 1024));// Cv2.ImShow("resize_image",resize_image);// 输入Tensorfor (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();Mat result_data = new Mat(6, 21504, MatType.CV_32F, result_array);result_data = result_data.T();string s = result_data.Dump();List<Rect2d> position_boxes = new List<Rect2d>();List<int> class_ids = new List<int>();List<float> confidences = new List<float>();List<float> rotations = new List<float>();// Preprocessing output resultsfor (int i = 0; i < result_data.Rows; i++){Mat classes_scores = new Mat(result_data, new Rect(4, i, 1, 1));string s2 = classes_scores.Dump();OpenCvSharp.Point max_classId_point, min_classId_point;double max_score, min_score;// Obtain the maximum value and its position in a set of dataCv2.MinMaxLoc(classes_scores, out min_score, out max_score,out min_classId_point, out max_classId_point);// Confidence level between 0 ~ 1// Obtain identification box informationif (max_score > 0.5){float cx = result_data.At<float>(i, 0);float cy = result_data.At<float>(i, 1);float ow = result_data.At<float>(i, 2);float oh = result_data.At<float>(i, 3);double x = (cx - 0.5 * ow) * factor;double y = (cy - 0.5 * oh) * factor;double width = ow * factor;double height = oh * factor;Rect2d box = new Rect2d();box.X = x;box.Y = y;box.Width = width;box.Height = height;position_boxes.Add(box);class_ids.Add(max_classId_point.X);confidences.Add((float)max_score);rotations.Add(result_data.At<float>(i, 5));}}// NMS int[] indexes = new int[position_boxes.Count];CvDnn.NMSBoxes(position_boxes, confidences, 0.5f, 0.5f, out indexes);List<RotatedRect> rotated_rects = new List<RotatedRect>();for (int i = 0; i < indexes.Length; i++){int index = indexes[i];float w = (float)position_boxes[index].Width;float h = (float)position_boxes[index].Height;float x = (float)position_boxes[index].X + w / 2;float y = (float)position_boxes[index].Y + h / 2;float r = rotations[index];float w_ = w > h ? w : h;float h_ = w > h ? h : w;r = (float)((w > h ? r : (float)(r + Math.PI / 2)) % Math.PI);RotatedRect rotate = new RotatedRect(new Point2f(x, y), new Size2f(w_, h_), (float)(r * 180.0 / Math.PI));if (rotate.Angle>90){rotate.Angle = rotate.Angle-180;}rotated_rects.Add(rotate);}result_image = image.Clone();for (int i = 0; i < indexes.Length; i++){int index = indexes[i];if (confidences[index]<0.7){continue;}Point2f[] points = rotated_rects[i].Points();//裁剪出需要的图片Mat codeMat = GetRotateCropImage(image, rotated_rects[i]);pictureBox3.Image = new Bitmap(codeMat.ToMemoryStream());for (int j = 0; j < 4; j++){Cv2.Line(result_image, (OpenCvSharp.Point)points[j], (OpenCvSharp.Point)points[(j + 1) % 4], new Scalar(0, 255, 0), 2, LineTypes.Link8);}Cv2.PutText(result_image, class_lables[class_ids[index]] + "-" + confidences[index].ToString("0.00"),(OpenCvSharp.Point)points[0], HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 0, 255), 2);pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());}textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";button2.Enabled = true;}private Mat GetRotateCropImage(Mat src, RotatedRect rect){bool wider = rect.Size.Width > rect.Size.Height;float angle = rect.Angle;OpenCvSharp.Size srcSize = src.Size();Rect boundingRect = rect.BoundingRect();int expTop = Math.Max(0, 0 - boundingRect.Top);int expBottom = Math.Max(0, boundingRect.Bottom - srcSize.Height);int expLeft = Math.Max(0, 0 - boundingRect.Left);int expRight = Math.Max(0, boundingRect.Right - srcSize.Width);Rect rectToExp = boundingRect + new OpenCvSharp.Point(expTop, expLeft);Rect roiRect = Rect.FromLTRB(boundingRect.Left + expLeft,boundingRect.Top + expTop,boundingRect.Right - expRight,boundingRect.Bottom - expBottom);Mat boundingMat = src[roiRect];Mat expanded = boundingMat.CopyMakeBorder(expTop, expBottom, expLeft, expRight, BorderTypes.Replicate);Point2f[] rp = rect.Points().Select(v => new Point2f(v.X - rectToExp.X, v.Y - rectToExp.Y)).ToArray();Point2f[] srcPoints = new[] { rp[0], rp[3], rp[2], rp[1] };if (wider == true && angle >= 0 && angle < 45){srcPoints = new[] { rp[1], rp[2], rp[3], rp[0] };}var ptsDst0 = new Point2f(0, 0);var ptsDst1 = new Point2f(rect.Size.Width, 0);var ptsDst2 = new Point2f(rect.Size.Width, rect.Size.Height);var ptsDst3 = new Point2f(0, rect.Size.Height);Mat matrix = Cv2.GetPerspectiveTransform(srcPoints, new[] { ptsDst0, ptsDst1, ptsDst2, ptsDst3 });Mat dest = expanded.WarpPerspective(matrix, new OpenCvSharp.Size(rect.Size.Width, rect.Size.Height), InterpolationFlags.Nearest, BorderTypes.Replicate);if (rect.Angle<0){Cv2.Flip(dest, dest, FlipMode.X);}boundingMat.Dispose();expanded.Dispose();matrix.Dispose();return dest;}private void Form1_Load(object sender, EventArgs e){model_path = "model/best.onnx";classer_path = "model/lable.txt";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 1024, 1024 });// 创建输入容器input_container = new List<NamedOnnxValue>();List<string> str = new List<string>();StreamReader sr = new StreamReader(classer_path);string line;while ((line = sr.ReadLine()) != null){str.Add(line);}class_lables = str.ToArray();image_path = "test_img/1.jpg";pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}SaveFileDialog sdf = new SaveFileDialog();private void button3_Click(object sender, EventArgs e){if (pictureBox3.Image == null){return;}Bitmap output = new Bitmap(pictureBox3.Image);sdf.Title = "保存";sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp";if (sdf.ShowDialog() == DialogResult.OK){switch (sdf.FilterIndex){case 1:{output.Save(sdf.FileName, ImageFormat.Jpeg);break;}case 2:{output.Save(sdf.FileName, ImageFormat.Png);break;}case 3:{output.Save(sdf.FileName, ImageFormat.Bmp);break;}}MessageBox.Show("保存成功,位置:" + sdf.FileName);}}}
}
下载
源码下载