Prometheus:开源监控解决方案的力量

前言

在当今高度数字化和云原生应用的时代,监控系统是确保系统稳定性和性能的关键组成部分。而 Prometheus 作为一种开源的监控解决方案,正在成为越来越多企业和开发者的首选。本文将深入探讨 Prometheus 的特性、优势以及如何利用它来构建强大的监控系统。

一、什么是 Prometheus

Prometheus是一种开源的系统监控和警报工具包,最初由 SoundCloud 开发并于 2012 年发布。它已成为 CNCF(Cloud Native Computing Foundation)的一部分,得到了广泛的社区支持和贡献。

Prometheus 核心特性:

  1. 多维数据模型: Prometheus 通过时间序列数据来描述监控数据。每条时间序列由指标名称和一组键值对标签唯一标识。
  2. 灵活的查询语言: PromQL 是 Prometheus 的查询语言,支持强大的多维度数据分析和聚合功能,如查询、过滤、聚合和计算。
  3. 实时警报: Prometheus 支持灵活的警报规则定义和管理,可以及时响应监控数据中的异常情况。
  4. 可扩展性和易部署: Prometheus 具有良好的可扩展性,能够与其他工具和系统集成。它也支持多种部署方式,包括单机、多机和容器化部署。
  5. 数据持久化: Prometheus 使用本地存储以简化部署和运维,并通过分片和压缩来优化存储效率。

二、Prometheus 发展历史

Prometheus 的发展历史可以追溯到 2012 年,以下是其主要发展阶段和关键事件:

  1. 创始和开源发布(2012年)
    • Prometheus 最初由 SoundCloud 的工程师团队开发,作为一种内部监控解决方案。
    • 在 2012 年,SoundCloud 将 Prometheus 开源发布,成为开放社区的一部分。
  2. 成为 CNCF 项目(2016年)
    • 2016 年,Prometheus 被 Cloud Native Computing Foundation(CNCF)接纳为其项目之一。
    • 这一举动加强了 Prometheus 在云原生和容器化技术生态系统中的地位,吸引了更广泛的社区参与和贡献。
  3. 1.0 版本发布(2016年)
    • 2016 年 11 月,Prometheus 发布了 1.0 版本,标志着其稳定性和生产就绪性的确认。
    • 此版本的发布进一步推动了 Prometheus 在企业和开发者社区中的广泛采用。
  4. 生态系统扩展(2017年以后)
    • 随着时间的推移,Prometheus 生态系统迅速扩展,包括各种 Exporter、集成插件、客户端库和可视化工具的增加。
    • 社区贡献者和合作伙伴不断推动 Prometheus 功能和兼容性的增强。
  5. PromQL 和功能增强
    • Prometheus 的查询语言 PromQL 在功能上不断演进,增加了更多复杂的查询和聚合功能,使其更适合于复杂的监控和分析场景。
  6. Cloud Native 推广(2018年以后)
    • 随着云原生技术的兴起,Prometheus 作为一种本地的云原生监控解决方案得到了广泛应用。
    • 它与 Kubernetes 等容器编排平台的集成使其成为云原生应用监控的重要组成部分。
  7. 持续发展和更新
    • Prometheus 继续保持活跃的开发和更新状态,定期发布新版本,以应对新的技术挑战和用户需求。
    • 其在监控、告警、数据存储和可扩展性方面的不断改进,使其保持了领先地位。

三、Prometheus 应用场景

Prometheus 作为一种灵活、强大的开源监控解决方案,适用于多种应用场景。

  1. 微服务架构监控
    • 在微服务架构中,通常有多个服务实例运行并且动态变化。Prometheus 能够轻松地监控每个服务的性能指标,如请求响应时间、吞吐量、错误率等。
    • Prometheus 的多维数据模型和灵活的查询语言(PromQL)使得在高度动态的微服务环境中进行监控成为可能。
  2. 容器化环境监控
    • 在使用容器编排工具如 Kubernetes 管理容器化应用时,Prometheus 可以集成到 Kubernetes 的监控解决方案中。
    • 它能够监控每个容器的资源使用情况(CPU、内存、存储)、容器健康状态以及整个集群的性能指标,帮助运维团队实时了解和管理系统状态。
  3. 云原生监控
    • 作为云原生应用的一部分,Prometheus 支持自动扩展和弹性架构的监控需求。
    • 它能够与云平台(如 AWS、Azure、Google Cloud)集成,并与其他云原生工具(如 Kubernetes、Prometheus Operator)配合使用,为云环境提供完整的监控解决方案。
  4. 基础设施监控
    • Prometheus 不仅可以监控应用程序层面的指标,还可以监控底层的基础设施组件,如服务器、网络设备、数据库等。
    • 通过 Exporter 或者其他集成方式,Prometheus 能够收集和展示关键的基础设施数据,帮助运维人员及时发现和解决问题。
  5. 自定义监控需求
    • Prometheus 提供了丰富的 API 和插件系统,用户可以根据自己的需求扩展和定制监控功能。
    • 可以通过编写自定义的 Exporter 或者使用已有的 Exporter 来监控特定的应用程序或服务。
  6. 大数据监控
    • 对于需要大规模数据处理和分析的场景,Prometheus 的数据模型和查询语言可以处理海量的时间序列数据,并支持高效的数据存储和查询。

四、Prometheus 体系结构

Prometheus 的体系结构主要包括以下几个关键组件:

  1. Prometheus Server
    • Prometheus Server 是整个监控系统的核心组件,负责收集、存储和查询时间序列数据
    • 它定期通过 HTTP 协议从各个目标(如应用程序、服务、服务器)中拉取指标数据,并将数据存储在本地的时间序列数据库中。
    • Prometheus Server 还提供了一个内置的 Web 界面,可以用于查询和可视化监控数据。
  2. Exporter
    • Exporter 是用于将各种应用程序、服务或系统的指标数据暴露给 Prometheus Server 的代理程序
    • Prometheus 生态系统中有许多现成的 Exporter,如 Node Exporter(用于主机监控)、Blackbox Exporter(用于网络监控)等。
    • 用户也可以编写自定义的 Exporter 来暴露特定应用程序或系统的指标数据。
  3. Pushgateway
    • Pushgateway 允许临时作业(如批处理任务、短期作业)向 Prometheus 推送指标数据
    • 通过 Pushgateway,这些作业可以把采集到的数据推送给 Prometheus Server,而不需要直接与Prometheus Server 通信。
  4. Alertmanager
    • Alertmanager 用于处理由 Prometheus Server 生成的警报信息
    • 它能够根据预先定义的规则对警报进行分类、去重、分组,并发送通知到各种不同的接收端,如电子邮件、Slack 等。
  5. PromQL
    • PromQL 是 Prometheus 的查询语言,用于从时间序列数据库中检索和分析数据。
    • 用户可以使用 PromQL 编写灵活的查询来获取所需的监控数据,并进行各种数据操作和计算。
  6. 存储
    • Prometheus 使用本地存储来保存时间序列数据,默认情况下采用 TSDB(Time Series Database)进行存储。
    • 存储层负责有效地管理和压缩数据,以便进行快速查询和检索。

五、Prometheus 快速入门

Prometheus 是一款数据的监控工具,为了可视化这些监控数据,可以搭配使用 Grafana 可视化工具。使用 Docker Compose 快速部署 Prometheus 和 Grafana 是一个高效的方法,我们以此来演示 Prometheus 的使用。

  1. 安装 Docker 和 Docker Compose:首先确保你的系统已经安装了 Docker 和 Docker Compose。如果没有安装,请参考官方文档进行安装。

  2. 创建项目目录:在你的工作目录下创建一个新的目录,例如 prometheus-grafana,然后进入该目录:

    mkdir prometheus-grafana
    cd prometheus-grafana
    
  3. 创建 Docker Compose 配置文件:在目录中创建一个 docker-compose.yml 文件,内容如下:

    version: '3.8'  # 定义 Docker Compose 文件的版本services:  # 定义要运行的服务prometheus:  # Prometheus 服务配置image: prom/prometheus:latest  # 使用的 Prometheus 镜像container_name: prometheus  # 容器名称volumes:- ./prometheus:/etc/prometheus  # 将本地目录映射到容器内的 Prometheus 配置目录ports:- "9090:9090"  # 将容器的 9090 端口映射到宿主机的 9090 端口grafana:  # Grafana 服务配置image: grafana/grafana:latest  # 使用的 Grafana 镜像container_name: grafana  # 容器名称depends_on:- prometheus  # 定义依赖关系,确保 Prometheus 在 Grafana 之前启动ports:- "3000:3000"  # 将容器的 3000 端口映射到宿主机的 3000 端口environment:- GF_SECURITY_ADMIN_PASSWORD=admin  # 设置 Grafana 管理员密码为 adminvolumes:- grafana-storage:/var/lib/grafana  # 将 Grafana 的数据目录映射到本地卷volumes:  # 定义 Docker 数据卷grafana-storage:  # Grafana 数据卷
    
  4. 创建 Prometheus 配置文件:在项目目录下创建一个 prometheus 目录,并在其中创建一个 prometheus.yml 文件,内容如下:

    global:scrape_interval: 15s # 拉取间隔scrape_configs:- job_name: 'prometheus'static_configs:- targets: ['localhost:9090']
    
  5. 启动服务:在项目目录下运行以下命令来启动 Prometheus 和 Grafana:

    docker-compose up -d
    
  6. 访问 Web 界面: Prometheus Web 界面功能单一,Grafana Web 界面功能比较丰富

    • 通过浏览器地址 http://localhost:9090 访问 Prometheus Web 界面

      image.png

    • 通过浏览器地址 http://localhost:3000 访问 Grafana Web 界面

      默认情况下,Grafana 的管理员用户名为 admin,密码为 admin(可以在 docker-compose.yml 中通过 GF_SECURITY_ADMIN_PASSWORD 环境变量更改)。

      image.png

六、Prometheus 监控指标

Prometheus + Grafana 搭建好之后,我们可以监控想要监控的指标。例如在 Grafana 中进行配置:

image.png

当配置好之后,我们可以看到如下效果:

image.png

我们可以针对同一指标选择不同图形进行展示,例如:

image.png

以上的 CPU 指标,是 Prometheus 中内置的,如果我们想要监控自己开发项目的指标该如何做呢?

以 SpringBoot 项目为例,在 SpringBoot 应用程序中集成 Prometheus 监控,通常需要通过以下步骤进行配置和实现:

  1. 添加 Prometheus 客户端库依赖: 首先,在 Spring Boot 项目中,需要添加 Prometheus 客户端库的依赖。Prometheus 提供了多种语言的客户端库,用于在应用程序中暴露和格式化监控指标,例如在 Java 中使用 prometheus/client_java 库。

    <dependency><groupId>io.prometheus</groupId><artifactId>simpleclient_spring_boot</artifactId><version>0.11.0</version>
    </dependency>
    
  2. 配置 Spring Boot 应用:在 Spring Boot 应用程序的配置中,需要将 Prometheus 的相关配置信息集成进来。通常,这包括将 Prometheus 客户端库配置为自动配置,并设置指标的基本信息。

    @SpringBootApplication
    public class YourApplication {public static void main(String[] args) {SpringApplication.run(YourApplication.class, args);}// 定义一个 Bean,配置 Prometheus 客户端的 Spring Boot 指标收集器@Beanpublic SpringBootMetricsCollector springBootMetricsCollector(Collection<PublicMetrics> publicMetrics) {// 创建 SpringBootMetricsCollector 对象,传入 PublicMetrics 集合作为参数return new SpringBootMetricsCollector(publicMetrics);}}
    
  3. 暴露 Metrics 端点:Spring Boot 应用程序默认提供了 /actuator/metrics 端点,该端点用于公开应用程序的各种指标。为了确保 Prometheus 能够正确抓取这些指标,你需要确保以下操作:

    management:  # 管理端点配置endpoints:  # 端点配置web:  # web 端点配置exposure:  # 暴露配置include: prometheus  # 包含 prometheus 端点
    
  4. 配置 Prometheus:最后,需要配置 Prometheus 以从 Spring Boot 应用程序中抓取指标。在 Prometheus 的配置文件 prometheus.yml 中,添加以下内容:

    scrape_configs:- job_name: 'spring-boot-app'  # 定义作业名称,用于标识这个抓取作业metrics_path: '/actuator/prometheus'  # 指定应用程序暴露指标的路径static_configs:- targets: ['your_spring_boot_app_host:port']  # 指定要抓取数据的目标地址
    

    在上述配置中:

    • job_name 是 Prometheus 用来标识这个任务的名称。
    • metrics_path 是 Spring Boot 应用程序暴露监控指标的路径,默认为 /actuator/prometheus
    • targets 是 Spring Boot 应用程序的主机和端口。

七、小结

Prometheus 作为一款功能强大且灵活的监控系统,在当今快速发展的技术领域中扮演着至关重要的角色。其简单的部署方式、强大的查询语言和多维度数据模型,使得开发人员和运维团队能够更加高效地管理和监控复杂的应用环境。

推荐阅读

  1. Spring 三级缓存
  2. 深入了解 MyBatis 插件:定制化你的持久层框架
  3. Zookeeper 注册中心:单机部署
  4. 【JavaScript】探索 JavaScript 中的解构赋值
  5. 深入理解 JavaScript 中的 Promise、async 和 await

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/860601.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CLion2024 for Mac[po] C和C++的跨平台解代码编辑器

Mac分享吧 文章目录 效果一、下载软件二、开始安装1、双击运行软件&#xff08;适合自己的M芯片版或Intel芯片版&#xff09;&#xff0c;将其从左侧拖入右侧文件夹中&#xff0c;等待安装完毕2、应用程序显示软件图标&#xff0c;表示安装成功3、打开访达&#xff0c;点击【文…

Live Wallpaper Themes 4K Pro for Mac v19.9 超高清4K动态壁纸

Live Wallpaper & Themes 4K Pro for Mac v19.7 是一款专为Mac用户设计的超高清4K动态壁纸应用程序。它凭借出色的视觉效果和丰富的个性化设置&#xff0c;为用户带来全新的桌面体验。 这款软件提供了大量精美的动态壁纸供用户选择&#xff0c;涵盖了各种风格和主题&#…

2-16 基于matlab的动载荷简支梁模态分析程序

基于matlab的动载荷简支梁模态分析程序&#xff0c;可调节简支梁参数&#xff0c;包括截面宽、截面高、梁长度、截面惯性矩、弹性模量、密度。输出前四阶固有频率&#xff0c;任意时刻、位置的响应结果。程序已调通&#xff0c;可直接运行。 2-16 matlab 动载荷简支梁模态分析 …

原生js实现图片预览控件,支持丝滑拖拽,滚轮放缩,放缩聚焦

手撸源代码如下&#xff1a;注释应该很详细了&#xff0c;拿去直用 可以放到在线编辑器测试&#xff0c;记得修改图片路径 菜鸟教程在线编辑器 <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" conten…

机器学习--KNN算法

目录 一、实验目的 二、实验的软、硬件平台 三、实验内容概述 四、实验设计方案 五、实验内容 一、实验目的 通过本实验掌握kNN算法的原理&#xff0c;熟悉kNN算法。 二、实验的软、硬件平台 python 3.6.5 CourseGrading在线实验环境 三、实验内容概述 1.kNN算法简介…

Android开发系列(九)Jetpack Compose之ConstraintLayout

ConstraintLayout是一个用于构建复杂布局的组件。它通过将子视图限制在给定的约束条件下来定位和排列视图。 使用ConstraintLayout&#xff0c;您可以通过定义视图之间的约束关系来指定它们的位置。这些约束可以是水平和垂直的对齐、边距、宽度和高度等。这允许您创建灵活而响…

⭐最新版!SpringBoot正确集成PageHelper姿势,不再被误导!

GGBond&#x1f508; CSDN的朋友们大家好哇&#xff0c;我是新来的Java练习生 CodeCodeBond&#xff01; 什么是PageHelper&#xff1f; 这里给不知道的人儿说明一下~~ 知道的xdm可以跳过了&#xff01; PageHelper顾名思义是一个 页面 帮手。也就是分页查询的一个好用的工具…

进阶篇08——MySQL管理

系统数据库 常用工具 mysql 客户端工具 mysqladmin 执行管理操作 mysqlbinlog 数据库二进制日志转成文本 mysqlshow 数据库查找 mysqldump 数据库备份 mysqlimport/source 数据库导入

vue3前后端开发:响应式对象不能直接成为前后端数据传输的对象

如图所示&#xff1a;前端控制台打印显示数据是没问题的&#xff0c;后端却显示没有接收到相应数据&#xff0c;但是后端的确接收到了一组空数据 直接说原因&#xff1a;这种情况唯一的原因是没有按正确格式传递参数。每个人写错的格式各有不同&#xff0c;我只是说明一下我在…

[深度学习]长短期记忆网络LSTM

1. 理解序列建模和RNN 长短期记忆网络是一种递归神经网络&#xff08;RNN&#xff09;的变体&#xff0c;专门用于处理和预测时间序列数据。首先&#xff0c;理解标准RNN的基本工作原理是非常重要的&#xff0c;因为LSTM是其在解决长期依赖问题上的改进。 传统的循环神经网络…

STM32定时器入门篇——(基本定时器的使用)

一、基本定时器的功能介绍&#xff1a; STM32F103的基本定时器有&#xff1a;TIM6、TIM7。基本定时器TIM6和TIM7各包含一个16位递增自动装载计数器&#xff0c;最大计数到2^16也就是65536&#xff0c;计数值为0~65535&#xff0c;其拥有的功能有&#xff1a;定时中断、主模式触…

Java网络编程之UDP通信与TCP通信交互代码实现

​import java.net.InetAddress; import java.io.IOException; class Main {public static void main(String[] args) {try { InetAddress localAddress InetAddress.getLocalHost(); //获得本地主机 InetAddress remoteAddress InetAddress.getByName("www.itcast.cn&qu…

电机故障检测系统的通用性限制分析

电机故障检测系统因应用环境、功能需求、经济性等多方面差异而难以实现通用。工厂与实验室在环境条件、使用频率、功能需求、成本、维护及数据处理方面有显著不同&#xff0c;此外&#xff0c;LabVIEW软件在两者中的应用和数据处理也存在差异&#xff0c;这进一步限制了系统的通…

一个实例配置多个服务名

更改参数实现配置多个服务名 需求背景 在做案例模拟的时候发现博主的环境配置的是3个服务名&#xff0c;通常都是一个服务名&#xff0c;服务名就是数据库名&#xff0c;出于好奇进行了以下实验。 环境&#xff1a;Oracle 11.2.0.4 单点 配置多个服务名的意义 可以通过服务…

YOLOv8/v10项目使用教程

根据改好的YOLOv8.yaml改yolov10.yaml教程 打开ultralytics/cfg/models/v8路径&#xff0c;找到需要移植的yaml文件&#xff0c;从其中复制相关的模块。打开一个YOLOv10的yaml文件。 注释掉之前相应位置的模块&#xff0c;并粘贴上面复制的模块&#xff0c;完成。 其余使用步骤…

基于SpringBoot+Vue的美容美发在线预约系统的设计与实现【附源码】

毕业设计(论文) 题目&#xff1a;基于SpringBootVue的美容美发在线预约系统的设计与实现 二级学院&#xff1a; 专业(方向)&#xff1a; 班 级&#xff1a; 学 生&#xff1a; 指导教师&#xff…

Go 语言学习笔记之通道 Channel

Go 语言学习笔记之通道 Channel 大家好&#xff0c;我是码农先森。 概念 Go 语言中的通道&#xff08;channel&#xff09;是用来在 Go 协程之间传递数据的一种通信机制。 通道可以避免多个协程直接共享内存&#xff0c;避免数据竞争和锁的使用&#xff0c;从而简化了并发程…

《Mybatis-Plus》系列文章目录

什么是 MyBatis-Plus&#xff1f; Mybatis-Plus是一个在MyBatis基础上进行增强和扩展的开源Java持久层框架。 Mybatis-Plus&#xff08;简称MP&#xff09;旨在简化开发、提高效率&#xff0c;通过提供一系列便捷的功能和工具&#xff0c;大幅度减少开发人员编写重复代码的时…

如何在web页面下做自动化测试?

自动化测试是在软件开发中非常重要的一环&#xff0c;它可以提高测试效率并减少错误率。在web页面下进行自动化测试&#xff0c;可以帮助我们验证网页的功能和交互&#xff0c;并确保它们在不同浏览器和平台上的一致性。本文将从零开始&#xff0c;详细介绍如何在web页面下进行…

10--7层负载均衡集群

前言&#xff1a;动静分离&#xff0c;资源分离都是在7层负载均衡完成的&#xff0c;此处常被与四层负载均衡比较&#xff0c;本章这里使用haproxy与nginx进行负载均衡总结演示。 1、基础概念详解 1.1、负载均衡 4层负载均衡和7层负载均衡是两种常见的负载均衡技术&#xff…