“序列优化探究:最长上升子序列的算法发现与应用“

最长上升子序列

最长上升子序列是指在一个给定序列中,找到一个最长的子序列,使得子序列中的元素单调递增。例如,序列 [1, 3, 5, 4, 7] 的最长上升子序列是 [1, 3, 5, 7],长度为4。

这是一个经典的动态规划问题。

假设dp[i]表示以第i个元素为结尾的最长上升子序列的长度。

可以用一个嵌套循环来遍历所有的元素对,如果前一个元素小于后一个元素,则可以将后一个元素添加到前一个元素所在的最长上升子序列中,从而得到以第i个元素为结尾的最长上升子序列长度。

具体地,我们可以这样定义dp[i]:

for (int j = 0; j < i; j++)if nums[j] < nums[i]dp[i] = max(dp[i], dp[j] + 1)

其中,nums是给定的序列,dp[i]表示以nums[i]为结尾的最长上升子序列长度,j是i之前的元素。由于我们需要找到最长的上升子序列,因此最终的答案应该是dp数组中的最大值。

下面是一个使用动态规划求解LIS问题的C++代码:

代码(动态规划)

#include <bits/stdc++.h>
using namespace std;// 该函数求 nums 序列的最长子序列
int lengthOfLIS(vector<int>& nums) {int n = nums.size();// 特判空序列if (n == 0) return 0;// 状态数组,初始化成1,因为各个元素可以单独构成一个上升序列vector<int> dp(n, 1);// 从nums[1] 开始遍历整个数组for (int i = 1; i < n; i++) {// 从前往后比那里之前的元素for (int j = 0; j < i; j++) {// j 位置的元素值小于 i 位置的元素值,则 nums[i] 可以拼接在 nums[j] 后面if (nums[j] < nums[i]) { dp[i] = max(dp[i], dp[j] + 1);}}}// 状态数组中最大的值就是最长上升子序列的长度return *max_element(dp.begin(), dp.end());}int main() {vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18};int ans = lengthOfLIS(nums);cout << ans << endl;return 0;
}

在上面的代码中:

首先定义了一个长度为 n 的 dp 数组,将其初始化为 1,因为每个元素本身都可以构成一个长度为 1 的上升子序列。

然后,用两个嵌套的循环来遍历所有的元素对,如果前一个元素小于后一个元素,则可以将后一个元素添加到前一个元素所在的最长上升子序列中,从而得到以第i个元素为结尾的最长上升子序列长度。

最后,我们返回dp数组中的最大值作为最长上升子序列的长度。

上述算法的时间复杂度为O(n^2),可以通过使用二分查找来将时间复杂度降为O(nlogn)。

具体来说,我们可以维护一个长度为 len 的子序列,其中 len 表示当前子序列的长度。

遍历所有的元素,如果当前元素比子序列中的最后一个元素还大,就将其添加到子序列的末尾,并将子序列长度加1。

否则,我们可以用二分查找找到子序列中第一个大于等于当前元素的位置,将该位置上的元素替换为当前元素,从而保证子序列仍然是上升的。

最终,子序列的长度就是最长上升子序列的长度。

下面是一个使用二分查找求解LIS问题的C++代码:

代码(二分优化)

#include <bits/stdc++.h>
using namespace std;// 该函数求 nums 序列的最长子序列
int lengthOfLIS(vector<int>& nums) {int n = nums.size();// 特判空序列if (n == 0) return 0;// 保存状态vector<int> dp;//依次遍历各个元素for (int i = 0; i < n; i++) {// 二分法找到第一个大于等于 nums[i] 的元素的位置int pos = lower_bound(dp.begin(), dp.end(), nums[i]) - dp.begin();// 如果没找到,就把 nums[i] 直接加入到 状态数组if (pos == dp.size()) {dp.push_back(nums[i]);} // 否则,用 nums[i] 替换该位置元素 else {dp[pos] = nums[i];}}// 状态数组的长度就是最长子序列的长度return dp.size();}int main() {vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18};int ans = lengthOfLIS(nums);cout << ans << endl;return 0;
}

在上面的代码中:

定义了一个空的dp数组,表示当前最长上升子序列。

对于每个元素,可以用lower_bound函数找到dp数组中第一个大于等于当前元素的位置pos。

然后将该位置上的元素替换为当前元素。如果pos等于dp的长度,表示当前元素比子序列中的所有元素都大,因此可以将其添加到子序列的末尾。

最终,子序列的长度就是最长上升子序列的长度。

时间复杂度为O(nlogn),空间复杂度为O(n)。可以看到,使用二分查找算法的时间复杂度要比暴力算法低得多,因此在实际应用中更为常用。

Java代码

import java.util.*;
public class Main{public static void main(String[] args){Scanner scan = new  Scanner(System.in);int N = 1010;int[] f = new int[N]; //以i为结尾的数的上升子序列中最大值int[] a = new int[N]; //数列int n = scan.nextInt();for(int i = 1 ; i <= n ; i ++ ){a[i] = scan.nextInt();}for(int i = 1 ; i <= n ; i ++ ){// 以i为结尾的数的上升子序列中最大值,每个数最低的个数就是1,所以将每一个数一开始初始化成1f[i] = 1; //求以i为结尾的最长上升子序列,就是求他的f[i - 1] 的最长上升子序列加上1,就是i本身for(int j = 1 ; j < i ; j ++){if(a[i] > a[j])    // 枚举前面的数,如果前面比i这个数小的就加1,一直加到枚举到i - 1f[i]  = Math.max(f[i],f[j] + 1);}     }int res = 0;for(int i = 1 ; i <= n ; i ++ ){res = Math.max(res,f[i]);}System.out.println(res);}
}

类型题:怪盗基德的滑翔翼

题目描述

怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。
而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。
有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。
不得已,怪盗基德只能操作受损的滑翔翼逃脱。
假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。
初始时,怪盗基德可以在任何一幢建筑的顶端。
他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。
因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。
他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。
请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?

分析

怪盗基德可以从任意一个楼房出发,只能向低的楼房跳,倒着看就是最长上升子序列,同时他可以向两个方向跳,因此需要正反两个方向求最长上升子序列,也可以一个方向分别求上升和下降。

代码

#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int f[N],a[N],d[N];
int k,n;int main()
{scanf("%d",&k);while(k--){scanf("%d",&n);// memset(f,1,sizeof(f));// memset(a,0,sizeof(a));for(int i=1;i<=n;i++){f[i] = 1;d[i] = 1;scanf("%d",&a[i]);}for(int i=1;i<=n;i++)for(int j=1;j<i;j++){if(a[j]<a[i])f[i] = max(f[i],f[j]+1);if(a[j]>a[i])d[i] = max(d[i],d[j]+1);}int res = 0;for(int i=1;i<=n;i++)res = max(res,max(f[i],d[i]));printf("%d\n",res);}return 0;}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/858202.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大学食堂管理系统

摘 要 随着信息技术的飞速发展和高校规模的不断扩大&#xff0c;大学食堂作为高校日常运营的重要组成部分&#xff0c;其管理效率和服务质量直接影响到师生的日常生活和学习。传统的食堂管理方式&#xff0c;如手工记录、纸质菜单、人工结算等&#xff0c;不仅效率低下&#x…

动手学深度学习(Pytorch版)代码实践 -计算机视觉-37微调

37微调 import os import torch import torchvision from torch import nn import liliPytorch as lp import matplotlib.pyplot as plt from d2l import torch as d2l# 获取数据集 d2l.DATA_HUB[hotdog] (d2l.DATA_URL hotdog.zip,fba480ffa8aa7e0febbb511d181409f899b9baa5…

每日一题——Python代码实现PAT乙级1048 数字加密(举一反三+思想解读+逐步优化)五千字好文

一个认为一切根源都是“自己不够强”的INTJ 个人主页&#xff1a;用哲学编程-CSDN博客专栏&#xff1a;每日一题——举一反三Python编程学习Python内置函数 Python-3.12.0文档解读 目录 初次尝试 再次尝试 代码点评 代码结构 时间复杂度 空间复杂度 优化建议 我要更强…

Nacos 2.x 系列【15】数据源插件支持达梦、Oracel、PostgreSQL......

文章目录 1. 概述2. 持久层机制2.1 固定语句2.2 数据源插件 3. 案例演示3.1 编译已实现插件3.2 自定义插件3.3 数据库初始化3.4 插件引入3.4.1 方式一&#xff1a;引入到源码3.4.2 方式二&#xff1a;插件加载目录 3.5 修改配置3.6 测试 1. 概述 在实际项目开发中&#xff0c;…

https://curl.trillworks.com不能用的解决方法

gitee源码:https://gitee.com/Project0ne/curlconverter 首先打开上面的链接 然后下载文件 下载文件到本地 然后安装node.js(Node.js official website.)不会的自行百度,这里不做过多赘述。 在curlconverter文件夹下面打开终端(在文件夹下面右键-在终端打开) 输入 npm…

图像反转入门

文章目录 1.实验目的2.需求3.代码4.运行结果图 1.实验目的 熟练掌握图像像素操作API 2.需求 自己构造一个纯黑图像,通过多种方法进行反转,最终生成一个纯白图像 3.代码 """ Time : 2024/6/23 下午3:46 Author : chensong File : 自己创建一个图像并…

Minillama3->dpo训练

GitHub - leeguandong/MiniLLaMA3: llama3的迷你版本,包括了数据,tokenizer,pt的全流程llama3的迷你版本,包括了数据,tokenizer,pt的全流程. Contribute to leeguandong/MiniLLaMA3 development by creating an account on GitHub.https://github.com/leeguandong/MiniLL…

[保姆级教程]uniapp自定义导航栏

文章目录 导文隐藏默认导航栏&#xff1a;全局隐藏当前页面隐藏 添加自定义导航栏视图&#xff1a;手写导航栏组件导航栏 导文 在 UniApp 中&#xff0c;自定义导航栏通常涉及到隐藏默认的导航栏&#xff0c;并在页面顶部添加自定义的视图组件来模拟导航栏的功能。 隐藏默认导航…

C++11 标准库头文件模拟实现

系列文章目录 文章目录 系列文章目录前言● 智能指针模板● Vector1. 简单版本2. X 总结 前言 暂不考虑支持多线程 常用STL的简单实现&#xff0c;主要内容百行左右完成&#xff0c;意在理解STL的原理 ● 智能指针模板 SharedPtr #include <assert.h> #include <ato…

主数据驱动的数据治理:技术解析与实践探索

数字化转型行业小伙伴可以加入我的星球&#xff0c;初衷成为各位数字化转型参考库&#xff0c;星球内容每周更新 个人工作经验资料全部放在这里&#xff0c;包含数据治理、数据要素、数据质量、数据安全、元数据、主数据、企业架构、DCMM、DSMM、CDGA、CDGP等各种数据相关材料 …

抖音多功能全自动引流工具,支持评论关注私信留痕点赞等,让你的抖音粉丝暴涨!

随着短视频行业的火爆&#xff0c;越来越多的人开始关注抖音这个平台。然而&#xff0c;如何在抖音上获得更多的关注和粉丝&#xff0c;成为了许多人面临的难题。为了帮助大家解决这个问题&#xff0c;今天我们将为大家推荐一款抖音多功能全自动引流脚本&#xff0c;这款脚本可…

HarmonyOS SDK助力鸿蒙原生应用“易感知、易理解、易操作”

6月21-23日&#xff0c;华为开发者大会&#xff08;HDC 2024&#xff09;盛大开幕。6月23日上午&#xff0c;《HarmonyOS开放能力&#xff0c;使能应用原生易用体验》分论坛成功举办&#xff0c;大会邀请了多位华为技术专家深度解读如何通过根技术、开放能力、场景化控件等亮点…

vue3 antdv Select 实现输入关键词,通过服务器去查询数据,并显示到表格中的实现思路。

实现思路&#xff1a; 1&#xff09;输入关键词&#xff0c;通过Select的查询事件&#xff08;onSearch&#xff09;来到服务器查询数据。 2&#xff09;根据查询到的数据显示到表格中&#xff0c;然后通过表格的&#xff08;cellClickEvent&#xff09;事件来选择相关的用户…

Python武器库开发-武器库篇之ThinkPHP 5.0.23-RCE 漏洞复现(六十四)

Python武器库开发-武器库篇之ThinkPHP 5.0.23-RCE 漏洞复现&#xff08;六十四&#xff09; 漏洞环境搭建 这里我们使用Kali虚拟机安装docker并搭建vulhub靶场来进行ThinkPHP漏洞环境的安装&#xff0c;我们进入 ThinkPHP漏洞环境&#xff0c;可以 cd ThinkPHP&#xff0c;然…

嵌入式学习——数据结构(队列)——day50

1. 查找二叉树、搜索二叉树、平衡二叉树 2. 哈希表——人的身份证——哈希函数 3. 哈希冲突、哈希矛盾 4. 哈希代码 4.1 创建哈希表 4.2 5. 算法设计 5.1 正确性 5.2 可读性&#xff08;高内聚、低耦合&#xff09; 5.3 健壮性 5.4 高效率&#xff08;时间复杂度&am…

【Java】pcm 与 wav 格式互转工具类 (附测试用例)

文章目录 1. 前言1.1 背景1.2 目标1.3 亮点 2. 用例说明3. 补充验证4. 相关链接 1. 前言 git 仓库 https://github.com/ChenghanY/pcm-wav-converter 1.1 背景 系统新接入语音引擎。 语音引擎只认 pcm 格式数据。前端只认 wav 格式 。 需要后端对 pcm 和 wav 格式实现互转&a…

2.超声波测距模块

1.简介 2.超声波的时序图 3.基于51单片机实现的代码 #include "reg52.h" #include "intrins.h" sbit led1P3^7;//小于10&#xff0c;led1亮&#xff0c;led2灭 sbit led2P3^6;//否则&#xff0c;led1灭&#xff0c;led2亮 sbit trigP1^5; sbit echo…

Adobe XD最新2023资源百度云盘下载(附教程)

如大家所了解的&#xff0c;Adobe XD是一种基于矢量的UI和UX设计工具&#xff0c;可用于设计从智能手表应用程序到成熟网站的任何内容&#xff0c;功能非常强大且操作便捷。目前最新已推出2023版本。 Adobe XD解决了Photoshop和其他图形应用程序无法解决的两个主要问题&#xf…

vue 中实现用户上传文件夹的功能

vue 中实现上传文件夹的功能 使用 input 元素的 webkitdirectory 属性使用 vue-simple-uploader 组件 vue 中文件上传一般都是用 element 中的 upload 组件&#xff0c;upload 组件可以实现单个文件或者多个文件的上传&#xff0c;但是无法通过选择文件夹上传其中文件。 要实现…

八爪鱼现金流-030,升级日志

八爪鱼现金流 八爪鱼 2024年4月4日09:27:02 v-0.0.1 资产包、负债包&#xff0c;功能优化 2024年4月15日09:27:26 v-0.0.2 增加公告模块 2024年4月18日12:14:32 v-0.0.3 市场查询优化。创建人脱敏处理。增加市场风云菜单。 2024年4月18日15:57:10 v-0.0.4 对于无截止日…