时序预测 | Matlab基于Transformer多变量时间序列多步预测

目录

      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab基于Transformer多变量时间序列多步预测;
2.多变量时间序列数据集(负荷数据集),采用前96个时刻预测的特征和负荷数据预测未来96个时刻的负荷数据;
3.excel数据方便替换,运行环境matlab2023及以上,展示最后96个时间步的预测对比图,评价指标MAE、MAPE、RMSE、MSE、R2;
注:程序和数据放在一个文件夹。
4.程序语言为matlab,程序可出预测效果图,指标图;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab基于Transformer多变量时间序列多步预测

在单 GPU 上训练。
|============================================================|
|  轮  |  迭代  |    经过的时间     |  小批量 RMSE  |  小批量损失  |  基础学习率  |
|     |      |  (hh:mm:ss)  |            |         |         |
|============================================================|
|   1 |    1 |     00:00:00 |       5.52 |    15.2 |  0.0010 |
|  10 |   50 |     00:00:02 |       4.55 |    10.4 |  0.0010 |
|  20 |  100 |     00:00:04 |       1.57 |     1.2 |  0.0010 |
|  30 |  150 |     00:00:07 |       1.54 |     1.2 |  0.0010 |
|  40 |  200 |     00:00:09 |       0.81 |     0.3 |  0.0010 |
|  50 |  250 |     00:00:11 |       1.19 |     0.7 |  0.0010 |
|============================================================|
训练结束: 已完成最大轮数。
历时 12.257705 秒。
1.均方差(MSE)76636.1226
2.根均方差(RMSE)276.8323
3.平均绝对误差(MAE):226.3397
4.平均相对百分误差(MAPE):5.2361%
5.R2:90.0432%MAE        MAPE       MSE      RMSE       R^2  ______    ________    _____    ______    _______Transformer    226.34    0.052361    76636    276.83    0.90043%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ...                 % 优化算法Adam'MaxEpochs', 150, ...                            % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', 0.01, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod',100, ...                   % 训练100次后开始调整学习率'LearnRateDropFactor',0.01, ...                    % 学习率调整因子'L2Regularization', 0.001, ...         % 正则化参数'ExecutionEnvironment', 'cpu',...                 % 训练环境'Verbose', 1, ...                                 % 关闭优化过程'Plots', 'none');                    % 画出曲线

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/857756.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

53【场景作图】纵深感

1 想清楚什么是前 什么是后 如果背景虚化,就不要处理地很平面,如果很平面,就留一个清晰的边缘 2 重叠 遮挡 被遮挡的物体会更远

微信小程序在独立分包中安装自定义依赖组件,构建自定义 npm 依赖

在微信小程序app.json文件中创建一个独立分包 然后在分包文件夹下 创建一个 package.json文件,在文件中添加你要安装的依赖文件及版本 在终端中开始安装依赖:npm i 依赖安装完成后,会产生一个 node_modules文件 需要项目的根目录下的projec…

动态规划:基本概念

Dynamic Programming 动态规划(Dynamic Programming, DP) 是一种算法设计技巧,通常用来解决具有重叠子问题和最优子结构性质的问题。它通过将问题分解为更小的子问题,逐步解决这些子问题并将结果存储起来,以避免重复计…

外星人Alienware m18R1 原厂Windows11系统

装后恢复到您开箱的体验界面,包括所有原机所有驱动AWCC、Mydell、office、mcafee等所有预装软件。 最适合您电脑的系统,经厂家手调试最佳状态,性能与功耗直接拉满,体验最原汁原味的系统。 原厂系统下载网址:http://w…

“拿来主义”学习边框动画(附源码)

“拿来主义”学习边框动画,附源码,CV可用 扫码关注:小拾岁月,发送 “边框动画”,获取源码。 需求分析 从边框的旋转动画,我们可以看出,可以在按钮元素的下方添加给 360旋转 的元素。同时&…

观察者模式(大话设计模式)C/C++版本

观察者模式 扩展&#xff1a;观察者模式——委托 C 参考&#xff1a;https://www.cnblogs.com/Galesaur-wcy/p/15905936.html #include <iostream> #include <list> #include <memory> #include <string> using namespace std;// Observer类 抽象观…

人工智能导论笔记

有关知识表示和推理的零碎知识点 人工智能导论复习题和概念-CSDN博客 机器学习篇 机器学习分类&#xff08;根据样本数据是否带有标签&#xff09;&#xff1a;监督的机器学习、无监督的机器学习、半监督学习。 监督学习又称为“有教师学习”。在监督学习中&#xff0c;模型…

MySQL 面试突击指南:核心知识点解析2

事务并发可能引发的问题 MySQL 是一个客户端/服务器架构的软件,对于同一个服务器来说,可以有多个客户端与之连接,每个客户端与服务器连接后,可以称为一个会话(Session)。每个客户端都可以在自己的会话中向服务器发出请求语句,一个请求语句可能是某个事务的一部分,也就…

什么是距离选通型水下三维激光扫描仪?(下)

距离选通激光水下成像的发展 距离选通激光成像技术始于上世纪60年代&#xff0c;受制于高性能脉冲激光器和选通成像器件发展的制约&#xff0c;激光距离选通成像技术在随后的二十年发展缓慢&#xff0c;直到20世纪90年代&#xff0c;随着硬件技术的不断成熟&#xff0c;该技术…

Prompt 提示词工程:翻译提示

近期在对计算机学习时&#xff0c;许多内容需要看原始的英文论文&#xff0c;对于我这种学渣来说特别不友好&#xff0c;&#x1f937;&#x1f3fb;‍♀️无奈只能一边看翻译&#xff0c;一边学习。 之前有搜到过专门的翻译工具&#xff0c;无奈都是按照字数算费用的&#xf…

【FreeRTOS】删除任务 用遥控器控制音乐

参考《FreeRTOS入门与工程实践(基于DshanMCU-103).pdf》 学习视频&#xff1a;【FreeRTOS入门与工程实践 --由浅入深带你学习FreeRTOS&#xff08;FreeRTOS教程 基于STM32&#xff0c;以实际项目为导向&#xff09;】 【精准空降到 01:22】 https://www.bilibili.com/video/BV1…

模拟原神圣遗物系统-小森设计项目,设计圣遗物词条基类

项目分析 首先需要理解圣遗物的方方面面 比如说圣遗物主词条部分和副词条部分都有那些特点 稍等一会&#xff1a;原神&#xff0c;启动&#xff01; 在此说明了什么&#xff1f; 这是完全体 &#xff1a;主副 词条都有 如果 升级直接暴击率 那么就留点 或者是另外的元素充能 …

关于笔记本电脑连接电源时触摸板失灵、卡顿、乱飘的问题

目录 前言 问题原因 解决方法 前言 我查阅了相关的资料和方法如下&#xff08;很感谢这位楼主大佬提供的问题所在&#xff09;&#xff1a; 问题原因 解决方法 那么解决方法无非就是几种&#xff08;方法仅供参考&#xff0c;不排除一些危险性&#xff09;&#xff1a; 1…

“论面向对象的建模及应用”必过范文,软考高级,系统架构设计师论文

论文真题 软件系统建模是软件开发中的重要环节,通过构建软件系统模型可以帮助系统开发人员理解系统,抽取业务过程和管理系统的复杂性,也可以方便各类人员之间的交流。软件系统建模是在系统需求分析和系统实现之间架起的一座桥梁,系统开发人员按照软件系统模型开发出符合设…

【人工智能】—XGBoost算法在构建互联网防火墙异常行为识别模型应用案例

摘要&#xff1a; 近年来&#xff0c;各地党委、政府加快推进新型工业化&#xff0c;部署实施制造强市战略&#xff0c;提出工业企业“智改数转”是推动全市工业经济稳增长的重要引擎&#xff0c;更是稳增长、促发展的重要抓手。今天博主就以互联网防火墙异常行为识别为例给大家…

PCM、WAV,立体声,单声道,正弦波等音频素材

1&#xff09;PCM、WAV音频素材&#xff0c;分享给将要学习或者正在学习audio开发的同学。 2&#xff09;内容属于原创&#xff0c;若转载&#xff0c;请说明出处。 3&#xff09;提供相关问题有偿答疑和支持。 常用的Audio PCM WAV不同采样率&#xff0c;不同采样深度&#…

信息安全基础知识(完整)

信息安全基础知识 安全策略表达模型是一种对安全需求与安全策略的抽象概念表达&#xff0c;一般分为自主访问控制模型&#xff08;HRU&#xff09;和强制访问控制模型&#xff08;BLP、Biba&#xff09;IDS基本原理是通过分析网络行为&#xff08;访问方式、访问量、与历史访问…

linux中Java程序调用C程序中方法的实现方式浅析

在Linux中&#xff0c;Java程序可以通过JNI&#xff08;Java Native Interface&#xff09;来调用C程序的方法。 Linux系统环境&#xff0c;Java调用C的主要流程如下&#xff1a; 1、创建Java类文件&#xff0c;如NativeLibrary.java 2、编写Java代码&#xff0c;加载.so共享库…

mysql中的datetime类型在Java中到底对应哪个时间类型?

因为MySQL中用的是datetime类型&#xff08;年月日 时分秒&#xff09; java.sql.Date 在Java中用 java.sql.Date 接收 但是得到的却只有年月日 前端接收到的是时间戳 java.time.LocalDateTime 在Java中使用 java.time.LocalDateTime 接收 得到的是带时区的时间 前端接收到的…

ROS中的TF是什么

在ROS (Robot Operating System) 中&#xff0c;tf::TransformBroadcaster 是一个用于发布坐标变换信息的重要类&#xff0c;尤其在处理机器人定位和导航数据时非常常见。tf::TransformBroadcaster 对象允许你广播从一个坐标系到另一个坐标系的变换关系&#xff0c;这对于多传感…