从CNN(卷积神经网络),又名CAM获取热图

一、说明

卷积神经网络(CNN)令人难以置信。如果你想知道它如何看待世界(图像),有一种方法是可视化它。
        这个想法是,我们从最后的密集层中得到权重,然后乘以最终的CNN层。这需要全局平均池化(GAP)才能发挥作用。

二、选择型号

        在本教程中,我们将 Keras 与 Tensorflow 和 ResNet50 结合使用。

        因为 ResNet50 有一个全局平均池化 (GAP) 层(稍后会解释),所以它适合我们的演示。这很完美。

测试图像

三、热图如何工作

        来自CNN的热图,又名类激活映射(CAM)。这个想法是我们收集卷积层的每个输出(作为图像),并将其组合在一个镜头中。(我们稍后会逐步展示代码)

卷积层输出

        因此,以下是全局平均池化 (GAP) 或全局最大池化的工作方式(取决于您使用哪个,但它们是相同的想法)。

        在一些特征提取后的模型中,我们使用与神经网络的扁平层(完全连接)来预测结果。但这一步就像丢弃图像维度和一些信息。

        相比之下,使用全局平均池 (GAP) 或全局最大池 (GMP) 在这里起作用。它保留图像维度信息,并使神经网络决定哪个CNN通道(特征图像)对于预测结果更为关键。

四、示例和代码

让我们从Keras中的ResNet50开始。

from tensorflow.keras.applications import ResNet50
res_model = ResNet50()
res_model.summary() 
ResNet-50 摘要

        如您所见(上图):

  • 红色:我们将使用此层作为“转移倾斜”。
  • 绿色:全球平均池化(GAP)。这项工作至关重要。

        并导入库和图像供以后使用。

import cv2
import matplotlib.pyplot as plt
from scipy.ndimage import zoom
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
img = cv2.imread('./test_cat.png')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
X = np.expand_dims(img, axis=0).astype(np.float32)
X = preprocess_input(X)

        我们使用“from scipy.ndimage import zoom”。为了调整由于CNN而调整热图的大小,特征提取图像的形状小于原始图像。

4.1 迁移学习

        现在提取我们将使用的图层。
        P.S:你可以从头开始训练你的模型,但需要很长时间,特征提取可能也需要大量的调优。

from tensorflow.keras.models import Model
conv_output = res_model.get_layer("conv5_block3_out").output
pred_ouptut = res_model.get_layer("predictions").output
model = Model(res_model.input, outputs=[conv_ouptut, pred_layer])

        这里我们有两个输出(如上所述,图中的红色部分)。

  • 首先是卷积网络输出
  • 二是预测结果

        并做预测

conv, pred = model.predict(X)
decode_predictions(pred)

结果如下所示。还不错

[[('n02123159', 'tiger_cat', 0.7185241),('n02123045', 'tabby', 0.1784818),('n02124075', 'Egyptian_cat', 0.034279127),('n03958227', 'plastic_bag', 0.006443105),('n03793489', 'mouse', 0.004671723)]]

4.2 输出

        现在,让我们看看一些CNN输出。

scale = 224 / 7
plt.figure(figsize=(16, 16))
for i in range(36):plt.subplot(6, 6, i + 1)plt.imshow(img)plt.imshow(zoom(conv[0, :,:,i], zoom=(scale, scale)), cmap='jet', alpha=0.3)

CNN 输出

我们首先显示地面图像( plt.imshow(img) ),因此我们可以将其与地面图像进行比较。
(如果你不这样做,会得到这样的结果)

图无背景图像

4.3 输出的一次性组合

        这是关键的。我们使用预测结果指数(目标)来获取权重。并乘以每个特征图与权重(点积)

target = np.argmax(pred, axis=1).squeeze()
w, b = model.get_layer("predictions").weights
weights = w[:, target].numpy()
heatmap = conv.squeeze() @ weights

然后显示带有地面图像的热图。

scale = 224 / 7
plt.figure(figsize=(12, 12))
plt.imshow(img)
plt.imshow(zoom(heatmap, zoom=(scale, scale)), cmap='jet', alpha=0.5)
CNN的热图

        这就是我们想要的结果。

五、参考资源

海沌

  • 用于图像识别的深度残差学习 — https://arxiv.org/abs/1512.03385
  • Grad-CAM:通过基于梯度的定位从深度网络进行视觉解释 — https://arxiv.org/abs/1610.02391
  • 网中网 — https://arxiv.org/abs/1312.4400
  • 学习区分性本地化的深层特征 — https://arxiv.org/abs/1512.04150

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/85746.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安防监控视频云存储平台EasyNVR对接EasyNVS时,一直不上线该如何解决?

视频安防监控平台EasyNVR可支持设备通过RTSP/Onvif协议接入,并能对接入的视频流进行处理与多端分发,包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等多种格式。 近期有用户在使用安防视频平台EasyNVR对接上级平台EasyNVS时,出现了一直不上线…

CentOS 7 制作openssl 1.1.1w 版本rpm包 —— 筑梦之路

源码下载地址: https://www.openssl.org/source/openssl-1.1.1w.tar.gz 参考之前的文章: openssl 1.1.1L /1.1.1o/1.1.1t rpm包制作——筑梦之路_openssl的rpm包_筑梦之路的博客-CSDN博客 直接上spec文件: Name: openssl Version: 1.1…

10.5 串联型稳压电路(1)

稳压管稳压电路输出电流较小,输出电压不可调,不能满足很多场合下的应用。串联型稳压电路以稳压管稳压电路为基础,利用晶体管的电流放大作用,增大负载电流;在电路中引入深度电压负反馈使输出电压稳定;并且&a…

【全网最全】2023华为杯研究生数学建模B题完整思路+python代码+20页超详细启发式算法+FFT(后续会更新)

目录 点击资料获取入口 DFT在通信等领域的重要应用,以及目前采用FFT计算DFT的硬件开销大的问题。提出了将DFT矩阵分解为整数矩阵乘积逼近的方法来降低硬件复杂度。 建模目标是对给定的DFT矩阵F_N,找到一组K个矩阵A,使F_N和A的乘积在Frobenius范数意义下尽可能接近,即最小化目标…

【算法思想】排序

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…

小土堆pytorch学习笔记

想入门pytorch强化学习,就去找pytorch的课来看。B站上播放量最高的就是小土堆的课,整体跟下来感觉内容还是很详细的,但和我的预期不太一样,这个是DL的不是RL的,不过作为对于pytorch使用的初期了解也是很好的&#xff0…

ChatGLM OPENCL 和 CUDA 哪个 GPU 加速计算框架更快

OpenCL和CUDA都是强大的GPU加速计算框架,CUDA在与NVIDIA GPU的紧密结合下提供了更高性能,适用于专注于NVIDIA平台开发者;而OpenCL具有跨平台兼容性和多厂商支持的优势,适用于需要在不同硬件平台上进行开发的场景。 在现代计算领域,GPU 加速已经成为一种强大的工具,能够显…

hexo使用指南

一、git设置 git ssh配置 本地操作: git config --global user.name "你的git用户名" git config --global user.email "你的git登录邮箱" #生成ssh公钥 ssh-keygen -t rsa -C "你的git登录邮箱"github官网操作: 将公…

Linux学习-HIS系统部署(1)

Git安装 #安装中文支持(选做) [rootProgramer ~]# echo $LANG #查看当前系统语言及编码 en_US.UTF-8 [rootProgramer ~]# yum -y install langpacks-zh_CN.noarch #安装中文支持 [rootProgramer ~]# vim /etc/locale.co…

RSD处理气象卫星数据——常用投影

李国春 气象卫星扫描刈幅宽覆盖范围广,在地球的不同位置可能需要不同的投影以便更好地表示这些观测数据。这与高分辨率的局地数据有很大不同,高分数据更倾向于用使用处理局地小范围的投影方式。本文选择性介绍几种RSD常用的适合低、中、高纬和极地地区的…

Java笔记:看清类加载过程

1 类加载的过程 1.1 加载 “加载”是“类加载”(Class Loading)过程的第一步。这个加载过程主要就是靠类器实现的,包括用户自定义类加载器。 加载的过程 在加载的过程中,JVM主要做3件事情 1)通过一个类的全限定名来获取定义此类的二进制字节…

svn(乌龟svn)和SVN-VS2022插件(visualsvn) 下载

下载地址: https://www.visualsvn.com/visualsvn/download/

SSM - Springboot - MyBatis-Plus 全栈体系(十一)

第二章 SpringFramework 五、Spring AOP 面向切面编程 6. Spring AOP 基于 XML 方式实现(了解) 6.1 准备工作 加入依赖和基于注解的 AOP 时一样。准备代码把测试基于注解功能时的 Java 类复制到新 module 中,去除所有注解。 6.2 配置 Sp…

C 初级学习笔记(基础)

目录 1.预处理器指令 预定义宏 预处理器运算符 (\) 参数化的宏 头文件 .h 引用头文件操作 2.函数(标识符&关键字&运算符)存储类 函数参数 a. 标识符&关键字 b. 运算符(算术、关系、逻辑、位、赋…

智能电力运维系统:数字化转型在电力行业的关键应用

随着信息技术、人工智能等的飞速发展,数字化改造已成为各行各业的重要发展趋势。在电力行业中,智能电力运维系统是数字化转型的关键应用之一。 力安科技智能电力运维系统是一种集自动化、智能化、云计算、物联网等先进技术于一体的电力运维管理解决方…

IntelliJ IDEA学习总结(3)—— IntelliJ IDEA 常用快捷键(带动图演示)

一、构建/编译 Ctrl + F9:构建项目 该快捷键,等同于菜单【Build】—>【Build Project】 执行该命令后,IntelliJ IDEA 会编译项目中所有类,并将编译结果输出到out目录中。IntelliJ IDEA 支持增量构建,会在上次构建的基础上,仅编译修改的类。 Ctrl + Shift + F9:重新编…

基于springboot+vue的高校专业实习管理系统

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…

原生js值之数据类型详解

js的数据类型 数据类型分类基本数据类型boolean:布尔类undefined:未定义的值null类型数值转换 NumberparseInt 转换整数 parseFloat转换浮点数 String类型特点如何转换成字符串模板字面量字符串插值模板字面量标签函数 symbol类型特性使用 BigInt类型复杂数据类型Object类属性与…

精品Python数字藏品购物商城爬虫-可视化大屏

《[含文档PPT源码等]精品基于Python实现的数字藏品爬虫》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程等 软件开发环境及开发工具: 开发语言:python 使用框架:Django 前端技术:JavaScript、VUE.js&a…

代码随想录算法训练营 动态规划part06

一、完全背包 卡哥的总结,还挺全代码随想录 (programmercarl.com) 二、零钱兑换 II 518. 零钱兑换 II - 力扣(LeetCode) 被选物品之间不需要满足特定关系,只需要选择物品,以达到「全局最优」或者「特定状态」即可。 …