【机器学习300问】127、怎么使用词嵌入?

        在探讨如何使用词嵌入之前,我们首先需要理解词嵌入模型的基础。之前的文章已提及,词嵌入技术旨在将文本转换为固定长度的向量,从而使计算机能够解析和理解文本内容。可以跳转下面链接去补充阅读哦!

【机器学习300问】126、词嵌入(Word Embedding)是什么意思?icon-default.png?t=N7T8https://blog.csdn.net/qq_39780701/article/details/139803883        那么,词嵌入模型又是什么呢?简而言之,词嵌入模型是一套特定的方法(通常是深度学习算法),它通过这些方法生成一个词嵌入矩阵。这个矩阵究竟是什么呢?它实际上是由一系列词嵌入向量组合而成的,每个向量代表一个词汇,从而构成了一个独特的词汇表示矩阵。更多的细节在下文中逐一展开。

一、词嵌入矩阵

一上来直接看词嵌入矩阵长什么样:

嵌入矩阵

        词嵌入矩阵长什么样子其实很清楚,没什么神秘的,但知道它张什么样并不是最关键的。关键点在于它的本质是什么?它怎么来的?以及它有什么用?想要回答出这些问题就得先从最一开始的问题:如何才能让计算机读懂人类的文字?实际上众多NLP概念都上从这个问题出发的,始终带着这个最初问题去学习,能让你有清晰的感受,解答众多“为什么这样做?”的疑惑。

(1)词嵌入矩阵的本质

        词嵌入矩阵,本质是一个词汇表,就是把词向量堆叠了起来,它的行数对应词汇表中词的数量,列数则是词嵌入的维度,即每个词向量的长度。矩阵中的每个元素代表了词汇表中某个词的一个特定维度上的值。

        例如上图中,词汇表有5000个不同的词,且词嵌入维度设为128,那么词嵌入矩阵就是一个5000行 x 128列的矩阵。计算机要想读懂某个词,通过查找词汇表中每个词的索引,就可以直接从矩阵中获取其对应的词嵌入向量。

(2)词嵌入矩阵怎么构建的?

        上面说到了词嵌入矩阵本质是一个特殊的词汇表(能让计算机真正读懂文字的词汇表),词嵌入矩阵通常是词嵌入机器学习算法在训练过程中动态学习得到。这一部分比较庞大,而且很重要,所以我单独写一篇文章来说,这里先简单提一下。矩阵可以通过无监督学习方法(如Word2Vec、GloVe)预先训练好,然后固定或微调使用。

        生成词嵌入矩阵的算法模型,被叫做“词嵌入模型或词嵌入算法”如:Word2Vec

(3)词嵌入矩阵有什么用?

        词嵌入矩阵E一旦构建完成后,通过与分词后的One-Hot编码矩阵进行运算,即可得到每一个词的词向量。

词嵌入矩阵的使用方式

用数学公式表达:

O_j \cdot E = e_j 

        其中,O_j是指某个词的one-hot编码, E是词嵌入矩阵,e_j是指这个词对应的词向量。

        这里讲的“有什么用?”不是指嵌入矩阵能用在什么地方,而是特指:词嵌入矩阵能够和one-hot编码向量相乘得到该词的词向量。

求出的结果是每个词的词向量

二、 怎么使用词嵌入?

        使用词嵌入技术通常有固定的基本步骤,下面就逐一介绍:

(1)基本步骤说明

① 选择或构建词嵌入模型

  • 选择现有模型:如Word2Vec、GloVe、FastText等,这些是预训练好的词嵌入模型,可以直接下载使用。
  • 自定义训练:如果你的领域有特定的语言习惯或术语,可能需要基于自己的语料库训练词嵌入模型。

② 准备语料库

  • 清洗和预处理文本数据,去除噪声,如标点符号、数字、停用词等。
  • 可能需要分词,尤其是对于非英语语言,如中文需要进行分词处理。

③ 构建词汇表并编码

  • 将语料库中所有出现过的单词或短语对应一个唯一的索引。
  • 利用这个索引,将词汇编码成一个One-Hot词汇表。

④ 转换文本为向量表示(词嵌入)

  • 将One-Hot编码通过与嵌入矩阵相乘得到想要词汇的词向量。
  • 然后你还可以采用平均法、加权平均法或者使用RNN/LSTM等模型结合上下文信息来聚合单个词向量为整个句子或文档的向量表示。

(2)举例说明

        用一个简化的过程来说明,如何使用词嵌入技术处理句子“我喜欢学习数学”,并假设有一个词汇表大小为5000,每个词的嵌入维度为128的词嵌入矩阵。

① 步骤1:选择一个现有的模型

② 步骤2:准备语料库

        使用只有一句话的语料库,简单说明一下。s=“我喜欢学习数学”

③ 步骤3:文本预处理

  • 分词:将句子“我喜欢学数学”分词为["我", "喜欢", "学习", "数学"]
  • 构建词汇表索引:假设这四个词都在我们的5000词词汇表内,且分别对应索引1、2、3、5000。
  • 进行One-Hot编码:将词语使用One-Hot进行编码,产生一个词汇矩阵V

③ 步骤3:文本转为向量(词嵌入)

假设我们已有一个(5000, 128)的词嵌入矩阵E,其中每一行代表一个词的128维向量。

通过运算得出想要的词向量:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/856708.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

会声会影2024旗舰版汉化最新安装包下载方法步骤

嗨,亲爱的CSDN的朋友们!🎉今天,我要跟大家分享一款让你的视频编辑体验升级的神器——会声会影2024最新版本!✨如果你是一个热衷于创作视频内容的创作者,那么你一定不能错过这个软件。它不仅功能强大&#x…

一款Wordpress网站导航主题,带昼夜切换功能

Wordpress网站导航主题,带昼夜切换功能。 基于wordpress,部署和使用都比较方便。 界面比较简洁大方。后台管理功能也比较全面,值得一试。 这款主题界面、功能都非常简洁。 作者把这款定位为简约导航主题,所以这款wordpress导航…

uniapp小程序获取右上角胶囊位置信息

文章目录 导文使用uni.getMenuButtonBoundingClientRect();方法实现完整案例 隐藏默认导航栏&#xff1a;全局隐藏当前页面隐藏 导文 uniapp小程序获取右上角胶囊位置信息 使用uni.getMenuButtonBoundingClientRect();方法实现 <script>const menuButtonInfo uni.getMe…

ffmpeg音视频开发从入门到精通——ffmpeg下载编译与安装

音视频领域学习ffmpeg的重要性 音视频领域中ffmpeg的广泛应用&#xff0c;包括直播、短视频、网络视频、实时互动和视频监控等领域。掌握FM和音视频技术可以获得更好的薪酬。 学习建议音视频学习建议与实战应用 音视频处理机制的学习&#xff0c;需要勤加练习&#xff0c;带…

【C++题解】1741 - 求出1~n中满足条件的数的个数和总和?

问题&#xff1a;1741 - 求出1~n中满足条件的数的个数和总和&#xff1f; 类型&#xff1a;简单循环 题目描述&#xff1a; 请求出 1∼n 之间所有满足 2 的倍数但不是 3 的倍数的数&#xff0c;有多少个&#xff0c;总和是多少&#xff1f; 输入&#xff1a; 读入一个整数 …

构建智慧高速公路:软件管理平台业务架构解析

随着交通网络的不断完善和技术的快速发展&#xff0c;智慧高速公路正成为交通领域的重要发展方向。在智慧高速公路系统中&#xff0c;软件管理平台扮演着关键的角色&#xff0c;它不仅是管理各种设备和系统的核心&#xff0c;还承担着数据监控、故障诊断、维护管理等重要任务。…

任务调度框架革新:TASKCTL在Docker环境中的高级应用

Docker&#xff1a;轻量级容器化技术的魅力 Docker 作为一款开源的轻量级容器化技术&#xff0c;近年来在 IT 界掀起了一股热潮。它通过封装应用及其运行环境&#xff0c;使得开发者可以快速构建、部署和运行应用。Docker 的优势在于其轻量级、可移植性和可扩展性&#xff0c;它…

基于python+django的深度学习的身份证识别考勤系统【D1】

简介&#xff1a; 基于Python和Django开发的深度学习身份证识别考勤系统&#xff0c;利用深度学习算法&#xff0c;能够智能化地分析上传的身份证照片&#xff0c;准确识别和提取姓名及号码信息。这一技术不仅简化了传统考勤过程&#xff0c;还显著提升了数据的精确性和管理效率…

异地如何共享视频文件?

人们对于信息流动的需求越来越高。尤其在分布式团队合作、远程办公的背景下&#xff0c;异地共享视频文件成为了一项重要的技术需求。本文将介绍一款名为【天联】的组网产品&#xff0c;它能够实现不同地区间快速组建局域网&#xff0c;解决不同设备间的信息远程通信问题。 2.…

计算机网络期末复习——简明扼要介绍考点及相关知识

期末复习的方法论&#xff1a;一般来说&#xff0c;期末复习都是“理论”结合“实践”。 理论&#xff0c;在于要对期末考点有基本的把握。可以询问老师或者师兄&#xff0c;总之要知道考试的重点在哪里。对照教材&#xff0c;勾画考试重点&#xff0c;删去不重要的琐碎知识点。…

NLP基础概念

NLP任务不同于CV任务&#xff0c;它存在更多难点&#xff0c;例如&#xff1a; 数据表示&#xff1a;NLP任务处理的是文本数据&#xff0c;需要将自然语言文本转化为计算机可处理的形式&#xff0c;即如何把字符串变为数值数据&#xff0c;常用的有词嵌入&#xff08;Word Embe…

搭建群辉AudioStation音乐库

目录 1、安装套件 2、配置歌词插件 3、配置音乐库 4、PC端使用 5、手机APP (1)DS Audio (2)音流 6、关于歌曲信息及封面 (1)歌词 (2)封面 作为音乐爱好者,在NAS上存了大量的无损音乐,用文件流量的方式播放,体验未免欠佳。这次我们打造自己的音乐库,随时随…

昇思25天学习打卡营第3天|数据集 Dataset|数据变换 Transforms

学AI还能赢奖品&#xff1f;每天30分钟&#xff0c;25天打通AI任督二脉 (qq.com) 数据集 Dataset 数据是深度学习的基础&#xff0c;高质量的数据输入将在整个深度神经网络中起到积极作用。MindSpore提供基于Pipeline的数据引擎&#xff0c;通过数据集&#xff08;Dataset&am…

探寻Scala的魅力:大数据开发语言的入门指南

大数据开发语言Scala入门 一、引言1.1 概念介绍1.2 Scala作为大数据开发语言的优势和应用场景1.2.1 强大的函数式编程支持1.2.2 可与Java无缝集成1.2.3 高性能和可扩展性1.2.4 大数据生态系统的支持 二、Scala基础知识2.1. Scala简介&#xff1a;2.1.1 Scala的起源和背景2.1.2 …

基于微信共享充电桩小程序毕业设计作品成品(3)开发技术文档_充电桩小程序前端技术栈

后台管理系统文件 所在路径&#xff1a;后台源码ht目录是后台 绿色显示的是系统框架&#xff0c;不要动 位置程序名说明源码根目录login.php后台登录页面源码根目录check_u_login.php后台登录处理程序ht 后台根目录index.php后台首页left.php后台左侧菜单u_logout.php退出登…

服务器数据恢复—raid5热备盘同步失败导致阵列崩溃如何恢复数据?

服务器存储数据恢复环境&故障&#xff1a; 某品牌DS5300存储&#xff0c;包含一个存储机头和多个磁盘柜&#xff0c;组建了多组RAID5磁盘阵列。 某个磁盘柜中的一组RAID5阵列由15块数据盘和1块热备硬盘组建。该磁盘柜中的某块硬盘离线&#xff0c;热备盘自动替换并开始同步…

【vue3】for循环多选框勾选必填校验

业务场景&#xff1a; 多选项必选一个&#xff0c;选了的输入框必填 <el-row :gutter"20"><el-col :span"12"><el-form-item label"捆绑终端硬件标识" prop"terminalCodeList"><el-checkbox-groupv-model"…

工程施工安全检测嵌入式解决方案

工程施工安全检测嵌入式解决方案 1 范围1.1 引言1.2 系统概述1.3 文档概述 2 工程施工安全检测系统应用场景2.1 作业操作安全检查2.2 受限空间作业安全检测2.3 应急设备操作行为检测2.4 动火作业安全检测 3 工程施工安全检测系统设计方案概述3.1 AI识别系统3.2 AI关键技术介绍3…

【人机交互 复习】第1章 人机交互概述

人机交互的知识点碎&#xff0c;而且都是文字&#xff0c;过一遍脑子里什么都留不下&#xff0c;但是背时间已经来不及了&#xff0c;最好还是找题要题感吧&#xff0c;加深印象才是做对文科的关键 一、概念 1.人机交互&#xff08;Human-Computer Interaction,HCI)&#xff1…

编写水文专业串口通讯软件的开发经历

编写水文专业串口通讯软件的开发经历 一、关于开发 YAC9900 水位雨量 RTU 通讯软件二、软件开发遇到的问题和困难1、开发架构的适应2、开发语言的学习3、.net core 8 架构中串口构建的难点4、YAC9900 水位雨量 RTU 通讯软件开发中的 UI 冻结 三、发现问题解决问题的具体办法1、…