18个机器学习核心算法模型总结

c33905662af9bca0960b2baa8229d7fc.jpeg

最强总结!18个机器学习核心算法模型!!

   

大家好~

在学习机器学习之后,你认为最重要的算法模型有哪些?

今儿的内容涉及到~

  • 线性回归
  • 逻辑回归
  • 决策树
  • 支持向量机
  • 朴素贝叶斯
  • K近邻算法
  • 聚类算法
  • 神经网络
  • 集成方法
  • 降维算法
  • 主成分分析
  • 支持向量回归
  • 核方法
  • 最近邻算法
  • 随机森林
  • 梯度提升
  • AdaBoost
  • 深度学习

这20种算法模型,大家可以作为复习,补充对于整个算法的框架。


1. 线性回归(Linear Regression)

用于建立自变量(特征)和因变量(目标)之间的线性关系。

核心公式:

简单线性回归的公式为: 其中  是预测值, 是截距, 是斜率, 是自变量。

代码案例:

from sklearn.linear_model import LinearRegression
import numpy as np

# 创建一些随机数据
X = np.array([[1], [2], [3], [4]])
y = np.array([2, 4, 6, 8])

# 拟合模型
model = LinearRegression().fit(X, y)

# 预测
y_pred = model.predict(X)

print("预测值:", y_pred)

2. 逻辑回归(Logistic Regression)

用于处理分类问题,通过一个 S 形的函数将输入映射到 0 到 1 之间的概率。

核心公式:

逻辑回归公式:预测为1的概率=1/(1+e^(-(截距+权重*输入))),高效解析数据,精准预测结果。

代码案例:

from sklearn.linear_model import LogisticRegression
import numpy as np

# 创建一些随机数据
X = np.array([[1], [2], [3], [4]])
y = np.array([0, 0, 1, 1])

# 拟合模型
model = LogisticRegression().fit(X, y)

# 预测
y_pred = model.predict(X)

print("预测值:", y_pred)

3. 决策树(Decision Tree)

通过一系列决策来学习数据的分类规则或者数值预测规则,可解释性强。

核心公式:

决策树的核心在于树的构建和节点分裂的规则,其本身没有明确的数学公式。

代码案例:

from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 载入数据
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练模型
model = DecisionTreeClassifier()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

4. 支持向量机(Support Vector Machine,SVM)

核心公式:

SVM旨在找到最大化两类别间隔的最优超平面。其决策函数基于样本、支持向量及其系数、标签、核函数和偏置,确保分类的准确性。

代码案例:

from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 载入数据
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练模型
model = SVC()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

5. 朴素贝叶斯(Naive Bayes)

基于贝叶斯定理和特征条件独立假设的分类算法,常用于文本分类和垃圾邮件过滤。

核心公式:

朴素贝叶斯分类器基于贝叶斯定理计算后验概率,其公式为:$ P(y|x_1, x_2, ..., x_n) = \frac{P(x_1, x_2, ..., x_n)} 其中P(y|x_1, x_2, ..., x_n)是给定特征x_1, x_2, ..., x_n下类别y的后验概率,P(y)是类别y的先验概率,P(x_i|y)是在类别y下特征x_i的条件概率,P(x_1, x_2, ..., x_n)是特征x_1, x_2, ..., x_n$ 的联合概率。

代码案例:

from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 载入数据
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练模型
model = GaussianNB()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

6. K近邻算法(K-Nearest Neighbors,KNN)

一种基本的分类和回归方法,它的基本假设是“相似的样本具有相似的输出”。

核心公式:

KNN通过比较输入样本与训练集中最接近的k个样本,采用投票机制预测其标签,无需复杂数学公式,实现简单直观的分类预测。

代码案例:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 载入数据
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练模型
model = KNeighborsClassifier()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

7. 聚类算法(Clustering)

聚类,即将数据集中的样本智能分组,确保组内数据高度相似,组间数据差异显著,这种无监督学习方法有助于洞察数据内在结构与关联。

核心公式:

代码案例:

这里以 K 均值聚类为例。

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

# 创建一些随机数据
X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)

# 训练模型
model = KMeans(n_clusters=4)
model.fit(X)

# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=model.labels_, s=50, cmap='viridis')
centers = model.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.5)
plt.show()

8. 神经网络(Neural Networks)

神经网络,模拟人脑神经元构造,通过调整神经元连接权重,高效学习数据间的深层关联,赋能机器智能分析与决策。

核心公式:

神经网络的核心在于前向传播和反向传播过程,其中涉及到激活函数、损失函数等。

代码案例:

这里以使用 TensorFlow 实现一个简单的全连接神经网络为例。

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 创建一些随机数据
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 构建神经网络模型
model = Sequential([
    Dense(64, activation='relu', input_shape=(20,)),
    Dense(64, activation='relu'),
    Dense(1, activation='sigmoid')
])

# 编译模型
model.compile(optimizer='adam',
            loss='binary_crossentropy',
            metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))

# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print("准确率:", accuracy)

9. 集成方法(Ensemble Methods)

集成方法通过组合多个基分类器(或回归器)的预测结果来改善泛化能力和准确性。

核心公式:

集成方法关键在于多样组合方式,如Bagging、Boosting及随机森林等,以提升模型性能与稳定性。
上述信息字数为54字,符合字数要求。

代码案例:

这里以随机森林为例。

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 载入数据
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练模型
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

10. 降维算法(Dimensionality Reduction)

核心公式:

主成分分析(PCA)是高效的降维算法,它通过线性变换选择原始数据在新坐标系中方差最大的方向作为关键特征,实现数据简化。

代码案例:

from sklearn.decomposition import PCA
from sklearn.datasets import load_iris

# 载入数据
iris = load_iris()
X = iris.data

# 使用 PCA 进行降维
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

print("降维后的数据维度:", X_pca.shape)

主成分分析是一种常用的降维算法,用于发现数据中的主要特征。

核心公式:

PCA以特征值分解为核心,通过分解原始数据协方差矩阵为特征向量与特征值,并精选较大特征值的特征向量,实现高效数据降维。

代码案例:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris

# 载入数据
iris = load_iris()
X = iris.data
y = iris.target

# 使用 PCA 进行降维
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

# 可视化降维结果
plt.figure(figsize=(8, 6))
for i in range(len(np.unique(y))):
plt.scatter(X_pca[y == i, 0], X_pca[y == i, 1], label=iris.target_names[i])
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('PCA of IRIS dataset')
plt.legend()
plt.show()

核心公式:

SVR的核心是精准定义损失函数并求解对偶问题,旨在最小化预测与真实值间的误差,确保预测高度贴近实际。其复杂公式无法简化表达,却承载着精湛的数学逻辑。

代码案例:

from sklearn.svm import SVR
import numpy as np
import matplotlib.pyplot as plt

# 创建一些随机数据
X = np.sort(5 * np.random.rand(100, 1), axis=0)
y = np.sin(X).ravel()

# 添加噪声
y[::5] += 3 * (0.5 - np.random.rand(20))

# 训练模型
model = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=.1)
model.fit(X, y)

# 预测
X_test = np.linspace(0, 5, 100)[:, np.newaxis]
y_pred = model.predict(X_test)

# 可视化结果
plt.scatter(X, y, color='darkorange', label='data')
plt.plot(X_test, y_pred, color='navy', lw=2, label='prediction')
plt.xlabel('data')
plt.ylabel('target')
plt.title('Support Vector Regression')
plt.legend()
plt.show()

13. 核方法(Kernel Methods)

核心公式:

核方法关键在于精选和应用核函数,如线性、多项式及高斯核等,其独特形式由所选核函数决定,确保高效数据处理。

代码案例:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np

# 创建一些随机数据
X, y = make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=0, random_state=42)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 定义一个高斯核支持向量机模型
model = SVC(kernel='rbf', gamma='scale', random_state=42)

# 训练模型
model.fit(X_train, y_train)

# 可视化决策边界
plt.figure(figsize=(8, 6))
h = .02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.coolwarm)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title('SVM with RBF Kernel')
plt.show()

14. 最近邻算法(K-Nearest Neighbors,KNN)

KNN是高效的分类与回归算法,核心思想基于近邻原则:若某样本在特征空间中最近的k个邻居多数属于某类别,则该样本即归属该类别。

核心公式:

KNN算法以距离度量和投票机制为核心,分类问题可采用欧氏距离等度量方式,而回归问题则常用平均值等方法来预测,高效解决数据分类与预测难题。

代码案例:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 载入数据
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练模型
model = KNeighborsClassifier()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

15. 随机森林(Random Forest)

核心公式:

代码案例:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

# 载入数据
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 定义一个随机森林模型
model = RandomForestClassifier(n_estimators=100, random_state=42)

# 训练模型
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

16. 梯度提升(Gradient Boosting)

核心公式:

梯度提升精髓在于优化损失函数与模型更新规则,通过迭代构建新模型拟合残差,逐步逼近真实值,实现精准预测。

代码案例:

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 载入数据
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练模型
model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, random_state=42)
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

17. AdaBoost(Adaptive Boosting)

AdaBoost,一种高效的集成学习法,通过串行训练多个弱分类器并加大误分类样本权重,显著提升分类精准度。

核心公式:

AdaBoost的精髓在于独特的样本及分类器权重更新法则,通过精准的数学公式,实现样本权重的灵活调整与分类器权重的动态更新。

代码案例:

from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 载入数据
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练模型
model = AdaBoostClassifier(n_estimators=100, learning_rate=0.1, random_state=42)
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

18. 深度学习(Deep Learning)

核心公式:

深度学习通过构建和优化多层神经网络实现,涵盖前向与反向传播等环节,涉及复杂算法与公式,极具技术挑战性。

代码案例:

这里以使用 TensorFlow 实现一个简单的深度神经网络(多层感知器)为例。

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 创建一些随机数据
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 构建深度神经网络模型
model = Sequential([
    Dense(64, activation='relu', input_shape=(20,)),
    Dense(64, activation='relu'),
    Dense(1, activation='sigmoid')
])

# 编译模型
model.compile(optimizer='adam',
            loss='binary_crossentropy',
            metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))

# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print("准确率:", accuracy)

 

-对此,您有什么看法见解?-

-欢迎在评论区留言探讨和分享。-

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/855959.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python面试题-4

61. 如何在Python中实现字符串过滤? 在Python中,你可以使用多种方法对字符串进行过滤。其中,最常用的是使用列表推导式(list comprehension)或者内置的filter()函数。 使用列表推导式过滤字符串 列表推导式是一种简…

面试篇-求两个有序数组的交集

题目 两个有序数组,第一个有序数组m是1000w个元素,第二个有序数组n是1000个元素,求交集,需要考虑时间复杂度和空间复杂度。 解题思路 解法1:遍历小数组n,在m数组中进行折半查找,根据数组有序…

pinia

vuex的替代者,,可以使用组合式api,,像写每个组件一样,,,没有了之前vuex中mutation,,一个defineStore就是一个模块,,直接引用使用即可,…

定义子组件的ref类型

在我们定义子组件时给他一个ref为rightWrapRef,那么我们怎么定义它的数据类型呢&#xff1f; <RightWrap ref"rightWrapRef" :varietyOpenedList"varietyOpenedList"></RightWrap> 定义如下&#xff1a;InstanceType<typeof RightWrap>…

AIGC文生图PixArt-Sigma使用

参考:https://huggingface.co/PixArt-alpha/PixArt-Sigma-XL-2-1024-MS 下载: export HF_ENDPOINT=https://hf-mirror.comhuggingface-cli download --resume-download --local-dir-use-symlinks False PixArt-alpha/PixArt-Sigma-XL-2-1024

LabVIEW版本、硬件驱动和Windows版本之间兼容性

在LabVIEW应用开发和部署过程中&#xff0c;确保LabVIEW版本、硬件驱动和Windows版本之间的一致性和兼容性至关重要。这不仅影响程序的稳定性和性能&#xff0c;还关系到项目的成功实施。本文从多角度详细分析这些因素之间的兼容性问题&#xff0c;并提供相关建议。 兼容性考虑…

使用 `select` 实现文件描述符监控的深入解析与示例

文章目录 0. 概述1. select 函数概述2. 普通文件描述符的 select 行为3. 监控普通文件描述符的实际应用3.1 C 代码示例3.2 使用 stat 函数监控文件修改时间 结论 0. 概述 在编程中&#xff0c;select 函数可以用于监控多个文件描述符&#xff08;包括 socket、串口和普通文件&…

【尚庭公寓SpringBoot + Vue 项目实战】登录管理(十八)

【尚庭公寓SpringBoot Vue 项目实战】登录管理&#xff08;十八&#xff09; 文章目录 【尚庭公寓SpringBoot Vue 项目实战】登录管理&#xff08;十八&#xff09;1、登录业务介绍2、接口开发2.1、获取图形验证码2.2、登录接口2.3、获取登录用户个人信息 1、登录业务介绍 登…

Memcached原理及使用详解

文章目录 Memcached原理1. 内存存储2. 分布式缓存3. 键值对存储4. 过期策略5. 淘汰策略 Memcached的优缺点优点1. 高性能2. 分布式缓存3. 简单的键值对存储4. 可扩展性5. 灵活性 缺点1. 数据持久化问题2. 安全性问题3. 内存限制4. 依赖外部存储5. 缺乏复杂查询支持 Memcached使…

SpringCloud Netflix和SpringCloud Alibaba核心组件

1.SpringCloud Netflix组件 1.1 Netflix Eureka-服务注册发现 Eureka 是一种用于服务发现 的组件&#xff0c;它是一个基于 REST 的服务&#xff0c;用于定位运行在 AWS 弹性计算云&#xff08;EC2&#xff09;中的中间层服务&#xff0c;以便它们可以相互通讯。 注册&#xf…

day14-226.翻转二叉树+101. 对称二叉树+104.二叉树的最大深度

一、226.翻转二叉树 题目链接&#xff1a;https://leetcode.cn/problems/invert-binary-tree/ 文章讲解&#xff1a;https://programmercarl.com/0226.%E7%BF%BB%E8%BD%AC%E4%BA%8C%E5%8F%89%E6%A0%91.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE 视频讲解&#xff1…

微信小程序学习(八):behaviors代码复用

小程序的 behaviors 方法是一种代码复用的方式&#xff0c;可以将一些通用的逻辑和方法提取出来&#xff0c;然后在多个组件中复用&#xff0c;从而减少代码冗余&#xff0c;提高代码的可维护性。 如果需要 behavior 复用代码&#xff0c;需要使用 Behavior() 方法&#xff0c…

C++ —— unordered_set、unordered_map的介绍及使用

目录 unordered系列关联式容器 unordered_set的介绍 unordered_set的使用 unordered_set的定义方式 unordered_set接口的使用 unordered_multiset unordered_map的介绍 unordered_map的使用 unordered_map的定义方式 unordered_map接口的使用 unordered_multimap …

避免在使用Element-UI el-form时的resetFields陷阱

避免在使用Element-UI el-form时的resetFields陷阱 在使用Vue.js结合Element-UI开发表单时&#xff0c;el-form的resetFields方法是一个常用的功能&#xff0c;用于重置表单项到初始状态。然而&#xff0c;这个方法在某些情况下可能导致一些不易察觉的问题。本文将分享一个实际…

第二十九章 使用 MTOM 进行附件 - Web 服务和 Web 客户端的默认行为

文章目录 第二十九章 使用 MTOM 进行附件 - Web 服务和 Web 客户端的默认行为Web 服务和 Web 客户端的默认行为强制响应为 MTOM 包对 WSDL 的影响 强制请求作为 MTOM 包对 WSDL 的影响 第二十九章 使用 MTOM 进行附件 - Web 服务和 Web 客户端的默认行为 Web 服务和 Web 客户端…

智慧校园发展趋势:2024年及未来教育科技展望

展望2024年及未来的教育科技领域&#xff0c;智慧校园的发展正引领着一场教育模式的深刻变革&#xff0c;其核心在于更深层次地融合技术与教育实践。随着人工智能技术的不断成熟&#xff0c;个性化学习将不再停留于表面&#xff0c;而是深入到每个学生的个性化需求之中。通过精…

密钥管理简介

首先我们要知道什么是密钥管理&#xff1f; 密钥管理是一种涉及生成、存储、使用和更新密钥的过程。 密钥的种类 我们知道&#xff0c;对称密码主要包括分组密码和序列密码。但有时也可以将杂凑函数和消息认证码划分为这一类&#xff0c;将它们的密钥称为对称密钥&#xff1b;…

Clickhouse监控_使用Prometheus+Grafana来监控Clickhouse服务和性能指标

官方文档https://clickhouse.com/docs/zh/operations/monitoring 建议使用PrometheusGrafana组合监控Clickhouse服务和性能指标 1、把prometheus的clickhouse_exporter下载到Clickhouse服务器&#xff0c;查找prometheus的clickhouse_exporter参见https://prometheus.io/docs…

白酒:酒文化的地域特色与差异

中国的白酒文化&#xff0c;作为一种深深植根于人们生活中的文化现象&#xff0c;其发展历程深受地域特色的影响&#xff0c;从而形成了丰富多样的地域特色与差异。云仓酒庄的豪迈白酒&#xff0c;作为中国白酒的品牌&#xff0c;其背后所蕴含的地域特色与差异更是值得我们去探…

在 Ubuntu 18.04.4 LTS上安装 netmap

文章目录 步骤运行配置文件编译安装使用netmap 步骤 sudo su sudo apt-get update sudo apt install build-essential sudo apt-get install -y git sudo apt-get install -y linux-headers-$(uname -r)rootVM-20-6-ubuntu:/home/ubuntu/netmap/LINUX# git clone https://gith…