【初阶数据结构】深入解析单链表:探索底层逻辑(无头单向非循环链表)

请添加图片描述

🔥引言

本篇将深入解析单链表:探索底层逻辑,理解底层是如何实现并了解该接口实现的优缺点,以便于我们在编写程序灵活地使用该数据结构。

请添加图片描述
Alt

🌈个人主页:是店小二呀
🌈C语言笔记专栏:C语言笔记
🌈C++笔记专栏: C++笔记
🌈初阶数据结构笔记专栏: 初阶数据结构笔记

🌈喜欢的诗句:无人扶我青云志 我自踏雪至山巅
请添加图片描述

文章目录

  • 一、链表的概念
  • 二、链表的分类
  • 四、实现无头单向非循环链表的相关接口(SLTlist.h)
  • 五、知识铺垫
  • 六、正式开始模拟实现单链表
    • 6.1 创建链表中的节点
    • 6.2 单链表的插入节点
      • 6.2.1 单链表的尾插
      • 6.2.2 单链表的头插
    • 6.3 单链表的删除
      • 6.3.1 单链表的尾删
      • 6.3.2 单链表的头删
    • 6.4 查找单链表中数据
    • 6.5 关于单链表的任意位置插入和删除
      • 6.5.1 单链表的pos指定前插入
      • 6.5.2 单链表的删除pos当前结点
      • 6.5.3 单链表的pos之后插入
      • 6.5.4 单链表的pos之后删除
    • 6.6 单链表的打印
  • 七、顺序表和链表的区别

一、链表的概念

链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的

二、链表的分类

在这里插入图片描述

我们重点需要关注以下两个链表:

1.无头单向非循环链表

结构简单,一般不会单独用来存数据。实际中更多是作为其他数据结构的子结构,如哈希桶、图的邻接表等等。另外这种结构在笔试面试中出现很多。

2.带头双向循环链表

结构最复杂,一般用在单独存储数据。实际中使用的链表数据结构,都是带头双向循环链表。虽然结构复杂,但是使用代码实现,以后会发现结构会带来很多优势,实现反而简单了,后面我们代码实现了就知道了

链表是通过一个个结点链接起来的数据结构,多个结点链接形成下列结构(箭头是不存在,是为了方便理解)
在这里插入图片描述

下列图片会简化结点间的链接过程:

在这里插入图片描述

注意】:

  1. 从图上可以看出,链式结构在逻辑上是连续的,但是在物理上不一定连续

  2. 现实中的节点一般都是从堆上申请出来

  3. 从堆上申请的空间。是按照一定的策略来分配的,两次申请的空间可能连续,也可能不连续

四、实现无头单向非循环链表的相关接口(SLTlist.h)

在这里插入图片描述

五、知识铺垫

1.实现部分接口需要通过二级指针接受实参

原因在于我们需要可以修改实参,而是实参为一级指针时(同样是传递地址),需要使用二级指针进行接受,否则获得临时拷贝,不会影响到实参。修改实参的情况,比如一开始为空,在插入时需将头指针存储在有效结点的的地址上,需要改变实参的值

2.单链表的初始化

这里实现链表,没有必要进行初始化,初始化对于一开始就要开辟的空间有初始化的需求,表是多个节点通过地址链接在一起,那么只需要开辟新节点的时候,初始化下就行了(有哨兵位需要初始化)

3.二级指针断言

二级指针存放的是头节点的地址,头节点的地址为空,那么还有什么意义呢?

当我们有所了解链表的结构,接下来是实现链表的相关接口,比如增删查改

六、正式开始模拟实现单链表

6.1 创建链表中的节点

在插入中需要先创建一块结点空间,再通过上一个结点通过当前结点的地址指向当前结点的位置。这是因为结点是通过地址访问的,结点里面存储着下一个节点的地址,理解为当前结点(通过下一个结点地址)指向下一个结点

SLNode* CreateNode(SLNDataType x)
{SLNode* newnode = (SLNode*)malloc(sizeof(SLNode));if (newnode==NULL){perror("malloc fail!!!");return (-1);}newnode->next = NULL;newnode->val = x;return newnode;
}

这里需要注意的是:申请到的空间交给什么类型去维护,为结点(结构体)申请空间,就需要交给结构体指针维护,同时需要注意开辟空间可能会失败,比如开辟空间多大,无法提供空间。对新结点设置了指向下一个结点为空

6.2 单链表的插入节点

插入分为三类:头插\尾插\任意位置插入(其中任意位置插入,在实现查找功能先放着)

6.2.1 单链表的尾插

void SLTPushBack(SLNode** phead,SLNDataType x)
{assert(phead);SLNode* newnode = CreateNode(x);//值已经有了,创建一个新节点if (*phead == NULL)//这里需要二级指针去改变了,外的头了{*phead = newnode;}else{//找尾SLNode* cur =*phead;//拷贝一份while (cur->next != NULL){cur = cur->next;}cur->next = newnode;//newnode已经搞下一次是空了	}	
}

这里需要注意的是:while语句cur需要到达尾,再进行尾插的操作。同时需要考虑到特殊情况,这里我们通过if判断语句对于* pphead为空的情况,将*pphead存储在第一个结点地址。
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

6.2.2 单链表的头插

void SLTPushFront(SLNode** pphead, SLNDataType x)
{assert(pphead);SLNode* newnode = CreateNode(x);if (*pphead == NULL){*pphead = newnode;}else{SLNode* cur = *pphead;*pphead = newnode;newnode->next = cur;}
}

这里需要注意的是:将*pphead移动到新节点的位置,再 * pphead指向cur(在原来的头节点位置)。同样的需要考虑到特殊情况,这里使用if判断语句对于* pphead为空的情况,将*pphead设为存储第一个结点地址。
在这里插入图片描述

6.3 单链表的删除

删除分为三类:头删\尾删\任意位置删除(其中任意位置删除,在实现查找功能先放着)

提前说明:空链表无法进行删除数据,需要在删除操作之前进行断言检查assert(*pphead)

6.3.1 单链表的尾删

void SLTPopBack(SLNode** pphead)
{assert(pphead);assert(*pphead);//空的时候//一个节点和多个节点//这里不创建一个cur变量,当只有一个节点的时候,直接ppheadSLNode* cur = *pphead;if (cur->next == NULL){*pphead = NULL;free(cur);cur = NULL;}else{while (cur->next->next!= NULL){cur = cur->next;//上一个节点}free(cur->next);cur->next = NULL;}
}

这里需要注意的是:删除需要分为两种情况存在一个节点和多个节点的处理。需要利用while循环找到删除节点的上一个节点,将上一个节点指向空,最后不要忘记free(cur->next),释放当前节点空间。
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

6.3.2 单链表的头删

void SLTPopFront(SLNode** pphead)
{assert(pphead);assert(*pphead);SLNode* cur = *pphead;if (cur->next == NULL){*pphead = NULL;free(cur);cur = NULL;}else{*pphead = cur->next;free(cur);cur = NULL;}
}

这里需要注意的是:删除需要分为两种情况存在一个节点和多个节点的处理。cur保存当头节点位置,*pphead移动到下一个节点的位置,再free(cur)
在这里插入图片描述

6.4 查找单链表中数据

SLNode* SLTFind(SLNode* pphead, SLNDataType x)
{SLNode* cur = pphead;while (cur!=NULL){if (cur->val == x)return cur;elsecur = cur->next;}return NULL;
}

这里需要注意的是:遍历链表,找到返回当前节点,没有找到继续向下遍历

6.5 关于单链表的任意位置插入和删除

6.5.1 单链表的pos指定前插入

void SLTInsert(SLNode** pphead,SLNode *pos,SLNDataType x)//pos指定之前插入
{assert(pphead);assert(*pphead);if (pos == NULL)//没有节点{SLTPushFront(pphead, x);}if (*pphead == pos)//一个节点{SLTPushFront(pphead, x);}else//多个节点{SLNode* newnode = CreateNode(x);SLNode* cur = *pphead;while (cur->next != pos)//上面避免了pos等于cur{cur = cur->next;}cur->next = newnode;newnode->next = pos;}
}

这里需要注意的是:需要分为三种情况,空节点,一个节点,多个节点就行处理。空节点调用尾插或者头插都可以,一个节点(在pos前插入)那么可以调用头插
在这里插入图片描述

6.5.2 单链表的删除pos当前结点

void SLTEeara(SLNode** pphead, SLNode* pos)
{assert(pphead);//防止用户传个空指针assert(*pphead);assert(pos);SLNode* next = pos->next;SLNode* cur = *pphead;if (cur==pos)*pphead = NULL;free(cur);cur = NULL;else{while (cur->next != pos){cur = cur->next;}cur->next = next;free(pos);pos = NULL;}
}

这里需要注意的是:分为两种情况,存在一个节点和多个节点的处理。如果使用三个变量,需要使用到的地址不会丢失,就不需要担心先后顺序问题。结点是一块块的独立空间,其链接方式也是较灵活的,这里跟上面方法是类似的。
在这里插入图片描述

如果不想在pos之前插入\删除,可以改动逻辑在pos之后进行插入、删除。

6.5.3 单链表的pos之后插入

void SLTInsertAfter(SLNode **pphead,SLNode* pos, SLNDataType x)
{assert(pphead);assert(*pphead);if (pos == NULL)//没有节点{SLTPushFront(pphead, x);}if (*pphead == pos)//一个节点{SLTPushBack(pphead, x);}else//多个节点{SLNode* newnode = CreateNode(x);SLNode* back = pos->next;newnode->next = back;pos->next = newnode;}
}

6.5.4 单链表的pos之后删除

void SLTEearaAfter(SLNode **pphead,SLNode* pos)
{assert(pphead);assert(*pphead);assert(pos);SLNode* cur = *pphead;SLNode* back = pos->next;if (cur == pos)//只有一个结点SLTPopBack(pphead);if(back->next==NULL){free(back);back = NULL;pos->next = NULL;}else{pos->next = back->next;free(back);back = NULL;}
}

上面的两个接口实现过程跟SLTInsertSLTEeara实现类似的,看看代码就能理解

在完成了单链表的核心接口,我们需要继续完善剩下的接口,使实现的单链表功能更加丰富起来。

6.6 单链表的打印

void SLTPrint(SLNode** pphead)//二级指针改变外的结构体指针类型
{assert(pphead);SLNode* cur = *pphead;while (cur!= NULL){printf("%d->", cur->val);cur = cur->next;}printf("NULL\n");
}

这里需要注意的是:当cur==NULL时,没有进去循环,需要额外打印NULL,最后不要忘记单链表的销毁

void SLTDestroy(SLNode** pphead)
{assert(pphead);SLNode* cur = *pphead;while (cur){SLNode* next = cur->next;free(cur);//这里cur不要赋空,还需要使用的cur = next;
}*pphead = NULL;
}

这里需要注意的是:链表是通过多个节点链接而成的,同时也是一块块独立空间,通过cur去访问每一个空间和释放每一块空间。其中free指针跟指针变身是没有关系的,释放的是指针所指向的那一块动态空间

七、顺序表和链表的区别

不同点顺序表链表
存储空间上物理上一定连续逻辑上连续,但物理上不一定 连续
随机访问支持O(1)不支持:O(N)
任意位置插入或者删除 元素可能需要搬移元素,效率低 O(N)只需修改指针指向
插入动态顺序表,空间不够时需要 扩容没有容量的概念
应用场景元素高效存储+频繁访问任意位置插入和删除频繁
缓存利用率

不管是哪一种数据结构都有他的优点和缺点,对此在使用数据结构中应该知道它的优缺点是什么,加以合理地利用解决实际中的问题。


请添加图片描述

以上就是本篇文章的所有内容,在此感谢大家的观看!这里是店小二初阶数据结构笔记,希望对你在学习初阶数据结构中有所帮助!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/854146.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

springboot 酒庄内部管理系统(源码+sql+论文)

绪论 1.1 系统研究目的意义 随着信息技术的不断发展,我们现在已经步入了信息化的时代了,而信息时代的代表便是网络技术的日渐成熟,而现在网络已经和我们的生活紧密的联系起来了,我们不敢想象没有网络我们的生活会像怎么样&#…

QQ登录测试用例

QQ登录测试用例 常见测试方法&#xff08;可参考软件测试<用例篇>&#xff09; 等价类&#xff1a; 1、有效等价类 &#xff1a;满足需求的数据集合 2、无效等价类&#xff1a;不满足需求的数据集合 边界值错误猜测法场景法 QQ测试用例设计&#xff1a;xmind 需要完整…

开源项目推荐-vue2+element+axios 个人财务管理系统

文章目录 financialmanagement项目简介项目特色项目预览卫星的实现方式&#xff1a;首次进入卫星效果的实现方式&#xff1a;卫星跟随鼠标滑动的随机效果实现方式&#xff1a;环境准备项目启动项目部署项目地址 financialmanagement 项目简介 vue2elementaxios 个人财务管理系…

【Linux硬盘读取】Windows下读取Linux系统的文件解决方案:Linux Reader4.5 By DiskInternals

前言 相信做机器视觉相关的很多人都会安装 Windows 和 Linux 双系统。在 Linux 下&#xff0c;我们可以很方便的访问Windows的磁盘&#xff0c;反过来却不行。但是这又是必须的。通过亲身体验&#xff0c;向大家推荐这么一个工具&#xff0c;可以让 Windows 方便的访问 Ext 2/3…

毕业了校园卡怎么改套餐?

毕业了校园卡怎么改套餐&#xff1f; 毕业生校园卡99元套餐变更8元保号套餐教程 学弟学妹们恭喜毕业呀&#x1f393; 校园卡绑定了好多东西注销不掉又不想交高额月租的看过来。 今天一招教你更改校园卡套餐。 中国移动/电信/联通App 打开App&#xff0c;在首页右上角点击人工…

Semantic Kernel 直接调用本地大模型与阿里云灵积 DashScope

本文主要介绍如何在无需网关&#xff0c;无需配置 HttpClient 的情况下&#xff0c;使用 Semantic Kernel 直接调用本地大模型与阿里云灵积 DashScope 等 OpenAI 接口兼容的大模型服务。 1. 背景 一直以来&#xff0c;我们都在探索如何更好地利用大型语言模型&#xff08;LLM&…

Windows给右键菜单添加新建.htm和.html的选项,并使用不同名称

添加新建 .html 文件的右键菜单选项 运行regedit打开注册表编辑器给计算机\HKEY_CLASSES_ROOT\.html新增,名为: ShellNew 的项, 名称不区分大小写, 可以写成shellnew给 ShellNew项 新增字符串值 命名为FileName 或 ‘NullFile’, 名称不区分大小写, 可以写成filename或nullfil…

五、在Qt下加载QVTKWidget控件,生成Visual Studio项目,显示点云(C++)

前言&#xff1a;因为项目需要通过Qt进行显示点云&#xff0c;参考了很多博文&#xff0c;但是并没有全部正确的&#xff0c;东拼西凑算是实现了&#xff0c;花费了两天时间&#xff0c;时间有点久&#xff0c;能力还有有待提升~~ 为此写篇博文记录一下。感谢各位大佬&#xff…

一套轻量、安全的问卷系统基座,提供面向个人和企业的一站式产品级解决方案

大家好&#xff0c;今天给大家分享的是一款轻量、安全的问卷系统基座。 XIAOJUSURVEY是一套轻量、安全的问卷系统基座&#xff0c;提供面向个人和企业的一站式产品级解决方案&#xff0c;快速满足各类线上调研场景。 内部系统已沉淀 40种题型&#xff0c;累积精选模板 100&a…

Linux shell 重定向输入和输出

Linux shell 重定向输入和输出 1. Standard I/O streams2. Redirecting to and from the standard file handles (标准文件句柄的重定向)2.1. command > file2.2. command >> file2.3. command 2> file2.4. command 2>> file2.5. command < file2.6. comm…

小白也能看懂 大模型的6个评估指标_大模型生成质量评估标准

近年来&#xff0c;随着深度学习技术的飞速发展&#xff0c;大型神经网络模型如BERT、GPT-3等已经成为自然语言处理、计算机视觉、语音识别等领域的重要工具。这些模型之所以称为"大型"&#xff0c;是因为它们通常包含数十亿甚至数千亿的参数&#xff0c;比以往的模型…

Semantic Kernel 中的流式输出SSE与Vue3前端接收示例

本文将介绍如何在使用 Semantic Kernel 框架的 ASP.NET 项目中使用流式输出 SSE&#xff08;Server-Sent Events&#xff09;&#xff0c;并展示如何在Vue3前端应用中接收这些数据。并介绍了如何使用 microsoft/fetch-event-source 库使用 POST 方法来接收 SSE 数据。 1. 背景 …

ABAP开发:屏幕输入中,在多个选项卡中如何确定选择了哪个Tab Strips?

在ABAP开发中&#xff0c;使用了SELECTION-SCREEN来创建了一个带有多个选项卡&#xff08;Tab Strips&#xff09;的屏幕。每个选项卡对应一个不同的屏幕编号&#xff08;SCREEN 101, 102, 103&#xff09;&#xff0c;如下图&#xff1a; 屏幕中有Name、Age、City三个标签选择…

39、基于深度学习的(拼音)字符识别(matlab)

1、原理及流程 深度学习中常用的字符识别方法包括卷积神经网络&#xff08;CNN&#xff09;和循环神经网络&#xff08;RNN&#xff09;。 数据准备&#xff1a;首先需要准备包含字符的数据集&#xff0c;通常是手写字符、印刷字符或者印刷字体数据集。 数据预处理&#xff1…

【网络安全】网络安全威胁及途径

1、网络安全威胁的种类及途径 &#xff08;1&#xff09;网络安全威胁的主要类型 网络安全面临的威胁和隐患种类繁多&#xff0c;主要包括人为因素、网络系统及数据资源和运行环境等影响。网络安全威胁主要表现为&#xff1a;黑客入侵、非授权访问、窃听、假冒合法用户、病毒…

18. 第十八章 继承

18. 继承 和面向对象编程最常相关的语言特性就是继承(inheritance). 继承值得是根据一个现有的类型, 定义一个修改版本的新类的能力. 本章中我会使用几个类来表达扑克牌, 牌组以及扑克牌性, 用于展示继承特性.如果你不玩扑克, 可以在http://wikipedia.org/wiki/Poker里阅读相关…

概率论拾遗

条件期望的性质 1.看成f(Y)即可 条件期望仅限于形式化公式&#xff0c;用于解决多个随机变量存在时的期望问题求解&#xff0c;即 E(?)E(E(?|Y))#直接应用此公式条件住一个随机变量&#xff0c;进行接下来的计算即可 定义随机变量之间的距离为&#xff0c;即均方距离 随机…

Redis分布式锁的实现、优化与Redlock算法探讨

Redis分布式锁最简单的实现 要实现分布式锁,首先需要Redis具备“互斥”能力,这可以通过SETNX命令实现。SETNX表示SET if Not Exists,即如果key不存在,才会设置它的值,否则什么也不做。利用这一点,不同客户端就能实现互斥,从而实现一个分布式锁。 举例: 客户端1申请加…

(科学:某天是星期几)泽勒一致性是由克里斯汀·泽勒开发的用于计算某天是星期几的算法。

(科学:某天是星期几)泽勒一致性是由克里斯汀泽勒开发的用于计算某天是星期几的算法。这个公式是: 其中: h是一个星期中的某一天(0 为星期六;1 为星期天;2 为星期一;3 为星期二;4 为 星期三;5 为星期四;6为星期五)。 q 是某月的第几天。 m 是月份(3 为三月&#xff0c;4 为四月,…

朴素贝叶斯分类器 #数据挖掘 #Python

朴素贝叶斯分类器是一种基于概率统计的简单但强大的机器学习算法。它假设特征之间是相互独立的&#xff08;“朴素”&#xff09;&#xff0c;尽管在现实世界中这通常不成立&#xff0c;但在许多情况下这种简化假设仍能提供良好的性能。 基本原理&#xff1a;朴素贝叶斯分类器…