CNN(九):Inception v3算法实战

 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍖 原作者:K同学啊|接辅导、项目定制 

1 理论基础

        Inception v3论文

        Inception v3由谷歌研究员Christian Szegedy等人在2015年的论文《Rethinking the Inception Architecture for Computer Vision》中提出。Inception v3是Inception网络系列的第三个版本,它在ImageNet图像识别竞赛中取得了优异成绩,尤其是在大规模图像识别任务中表现出色。

        Inception v3的主要特点如下:

1、更深的网络结构:Inception v3比之前的Inception网络结构更深,包含了48层卷积层。这使得网络可以提取更多层次的特征,从而在图像识别任务上取得更好的效果。

2、使用Factorized Convolutions:Inception v3采用了Factorized Convolutions(分解卷积),将较大的卷积核分解为多个较小卷积核。这种方法可以降低网络的参数数量,减少计算复杂度,同时保持良好的性能。

3、使用Batch Normalization:Inception v3在每个卷积层之后都添加了Batch Normalization(BN),这有助于网络的收敛和泛化能力。BN可以减少Internal Covariate Shift(内部协变量偏移)现象,加快训练速度,同时提高模型的鲁棒性。

4、辅助分类器:Inception v3引入了辅助分类器,可以在网络训练过程中提供额外的梯度信息,帮助网络更好的学习特征。辅助分类器位于网络的某个中间层,其输出会与主分类器的输出进行加权融合,从而得到最终的预测结果。

5、基于RMSProp的优化器:Inception v3使用了RMSProp优化器进行训练。相比于传统的随机梯度下降(SGD)方法,RMSProp可以自适应地调整学习率,使得训练过程更加稳定,收敛速度更快。

        Inception v3在图像分类、物体检测和图像分割等计算机视觉任务中均取得了显著的效果。然而,由于其较大的网络结构和计算复杂度,Inception v3在实际应用中可能需要较高的硬件要求。

        相对于Inception v1的Inception Module结构,Inception v3中做出了如下改动:

(1)将5x5的卷积分解为两个3x3的卷积运算已提升计算速度。尽管这有点违反直觉,但一个5x5的卷积在计算成本上是一个3x3卷积的2.78倍。所以叠加两个3x3卷积实际上在性能上会有所提升,如下图所示:

Inception v1

 

     

Inception v3

 (2)此外,作者将nxn的卷积核尺寸分解为1xn和nx1两个卷积,例如, 一个3x3的卷积等价于首先执行一个1x3的卷积,再执行一个3x1的卷积。他们还发现这种方法在成本上要比单个3x3的卷积降低33%,这一结构如下图所示:

        此处如果n=3,则与上一张图像一致。最左侧的5x5卷积可被表示为两个3x3卷积,太慢又可以表示为1x3和3x1卷积。

        模块中的滤波器组被扩展(即变得更宽而不是更深),以解决表征性瓶颈。如果该模块没有被拓展宽度,而是变得更深,那么维度会过多减少,造成信息损失。如下图所示:

        最后实现的inception v3网络是如下所示:

 

2 代码实现

2.1 开发环境

电脑系统:ubuntu16.04

编译器:Jupter Lab

语言环境:Python 3.7

深度学习环境:Pytorch

2.2 前期准备

2.2.1 设置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warningswarnings.filterwarnings("ignore")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")print(device)

2.2.2 导入数据

import os,PIL,random,pathlib
data_dir = '../data/4-data/'
data_dir = pathlib.Path(data_dir)
data_dirdata_paths = list(data_dir.glob('*'))
classNames = [str(path).split('\\')[-1] for path in data_paths]
print('classNames:', classNames , '\n')total_dir = '../data/4-data/'
train_transforms = transforms.Compose([transforms.Resize([299, 299]),  # resize输入图片transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换成tensortransforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])  # 从数据集中随机抽样计算得到
])total_data = datasets.ImageFolder(total_dir, transform=train_transforms)
print(total_data, '\n')print(total_data.class_to_idx)

        输出结果如下:

2.2.3 划分数据集

train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset, test_dataset)batch_size = 4
train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,shuffle=True,num_workers=1,pin_memory=False)
test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size,shuffle=True,num_workers=1,pin_memory=False)for X, y in test_dl:print("Shape of X [N, C, H, W]:", X.shape)print("Shape of y:", y.shape, y.dtype)break

        输出结果如下所示:

2.3 Inception v3的实现

2.3.1 Inception-A

import torch
import torch.nn as nn
import torch.nn.functional as Fclass BasicConv2d(nn.Module):def __init__(self, in_channels, out_channels, **kwargs):super(BasicConv2d, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)self.bn = nn.BatchNorm2d(out_channels, eps=0.001)def forward(self, x):x = self.conv(x)x = self.bn(x)return F.relu(x, inplace=True)class InceptionA(nn.Module):def __init__(self, in_channels, pool_features):super(InceptionA, self).__init__()# 1x1 conv branchself.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1) #1self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1)self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2)self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, padding=1)self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size=1)def forward(self, x):branch1x1 = self.branch1x1(x)branch5x5 = self.branch5x5_1(x)branch5x5 = self.branch5x5_2(branch5x5)branch3x3dbl = self.branch3x3dbl_1(x)branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)branch_pool = self.branch_pool(branch_pool)outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]return torch.cat(outputs, 1)

2.3.2 Inception-B

class InceptionB(nn.Module):def __init__(self, in_channels, channels_7x7):super(InceptionB, self).__init__()# 1x1 conv branchself.branch1x1 = BasicConv2d(in_channels, 192, kernel_size=1)c7 = channels_7x7self.branch7x7_1 = BasicConv2d(in_channels, c7, kernel_size=1)self.branch7x7_2 = BasicConv2d(c7, c7, kernel_size=(1,7), padding=(0,3))self.branch7x7_3 = BasicConv2d(c7, 192, kernel_size=(7,1), padding=(3,0))self.branch7x7dbl_1 = BasicConv2d(in_channels, c7, kernel_size=1)self.branch7x7dbl_2 = BasicConv2d(c7, c7, kernel_size=(7,1), padding=(3,0))self.branch7x7dbl_3 = BasicConv2d(c7, c7, kernel_size=(1,7), padding=(0,3))self.branch7x7dbl_4 = BasicConv2d(c7, c7, kernel_size=(7,1), padding=(3,0))self.branch7x7dbl_5 = BasicConv2d(c7, 192, kernel_size=(1,7), padding=(0,3))self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)def forward(self, x):branch1x1 = self.branch1x1(x)branch7x7 = self.branch7x7_1(x)branch7x7 = self.branch7x7_2(branch7x7)branch7x7 = self.branch7x7_3(branch7x7)branch7x7dbl = self.branch7x7dbl_1(x)branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)branch_pool = self.branch_pool(branch_pool)outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]return torch.cat(outputs, 1)

2.3.3 Inception-C

class InceptionC(nn.Module):def __init__(self, in_channels):super(InceptionC, self).__init__()self.branch1x1 = BasicConv2d(in_channels, 320, kernel_size=1) #1self.branch3x3_1 = BasicConv2d(in_channels, 384, kernel_size=1)self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1,3), padding=(0,1))self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3,1), padding=(1,0))self.branch3x3dbl_1 = BasicConv2d(in_channels, 448, kernel_size=1)self.branch3x3dbl_2 = BasicConv2d(448, 384, kernel_size=3, padding=1)self.branch3x3dbl_3a = BasicConv2d(384, 384, kernel_size=(1,3), padding=(0,1))self.branch3x3dbl_3b = BasicConv2d(384, 384, kernel_size=(3,1), padding=(1,0))self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)def forward(self, x):branch1x1 = self.branch1x1(x)branch3x3 = self.branch3x3_1(x)branch3x3 = [self.branch3x3_2a(branch3x3),self.branch3x3_2b(branch3x3),]branch3x3 = torch.cat(branch3x3, 1)branch3x3dbl = self.branch3x3dbl_1(x)branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)branch3x3dbl = [self.branch3x3dbl_3a(branch3x3dbl),self.branch3x3dbl_3b(branch3x3dbl),]branch3x3dbl = torch.cat(branch3x3dbl, 1)branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)branch_pool = self.branch_pool(branch_pool)outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]return torch.cat(outputs, 1)

2.3.4 Reduction-A

class ReductionA(nn.Module):def __init__(self, in_channels):super(ReductionA, self).__init__()self.branch3x3 = BasicConv2d(in_channels, 384, kernel_size=3, stride=2) self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, stride=2)def forward(self, x):branch3x3 = self.branch3x3(x)branch3x3dbl = self.branch3x3dbl_1(x)branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)outputs = [branch3x3, branch3x3dbl, branch_pool]return torch.cat(outputs, 1)

2.3.5 Reduction-B

class ReductionB(nn.Module):def __init__(self, in_channels):super(ReductionB, self).__init__()self.branch3x3_1 = BasicConv2d(in_channels, 192, kernel_size=1) self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=3, stride=2) self.branch7x7x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)self.branch7x7x3_2 = BasicConv2d(192, 192, kernel_size=(1,7), padding=(0,3))self.branch7x7x3_3 = BasicConv2d(192, 192, kernel_size=(7,1), padding=(3,0))self.branch7x7x3_4 = BasicConv2d(192, 192, kernel_size=3, stride=2)def forward(self, x):branch3x3 = self.branch3x3_1(x)branch3x3 = self.branch3x3_2(branch3x3)branch7x7x3 = self.branch7x7x3_1(x)branch7x7x3 = self.branch7x7x3_2(branch7x7x3)branch7x7x3 = self.branch7x7x3_3(branch7x7x3)branch7x7x3 = self.branch7x7x3_4(branch7x7x3)branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)outputs = [branch3x3, branch7x7x3, branch_pool]return torch.cat(outputs, 1)

2.3.6 辅助分支

class InceptionAux(nn.Module):def __init__(self, in_channels, num_classes):super(InceptionAux, self).__init__()self.conv0 = BasicConv2d(in_channels, 128, kernel_size=1)self.conv1 = BasicConv2d(128, 768, kernel_size=5)self.conv1.stddev = 0.01self.fc = nn.Linear(768, num_classes)self.fc.stddev = 0.001def forward(self, x):# 17x17x768x = F.avg_pool2d(x, kernel_size=5, stride=3)# 5x5x768x = self.conv0(x)# 5x5x128x = self.conv1(x)# 1x1x128x = x.view(x.size(0), -1)# 768x = self.fc(x)# num_classesreturn x

2.3.7 模型搭建

class InceptionV3(nn.Module):def __init__(self, num_classes=1000, aux_logits=False, transform_input=False):super(InceptionV3, self).__init__()self.aux_logits = aux_logitsself.transform_input = transform_inputself.conv2d_1a_3x3 = BasicConv2d(3, 32, kernel_size=3, stride=2)self.conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=3)self.conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=3, padding=1)self.conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1)self.conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=3)self.Mixed_5b = InceptionA(192, pool_features=32)self.Mixed_5c = InceptionA(256, pool_features=64)self.Mixed_5d = InceptionA(288, pool_features=64)self.Mixed_6a = ReductionA(288)self.Mixed_6b = InceptionB(768, channels_7x7=128)self.Mixed_6c = InceptionB(768, channels_7x7=160)self.Mixed_6d = InceptionB(768, channels_7x7=160)self.Mixed_6e = InceptionB(768, channels_7x7=192)if aux_logits:self.AuxLogits = InceptionAux(768, num_classes)self.Mixed_7a = ReductionB(768)self.Mixed_7b = InceptionC(1280)self.Mixed_7c = InceptionC(2048)self.fc = nn.Linear(2048, num_classes)def forward(self, x):if self.transform_input:x = x.clone()x[:, 0] = x[:, 0] * (0.229 / 0.5) + (0.485 - 0.5) / 0.5x[:, 1] = x[:, 1] * (0.224 / 0.5) + (0.456 - 0.5) / 0.5x[:, 2] = x[:, 2] * (0.225 / 0.5) + (0.406 - 0.5) / 0.5# 299*299*3x = self.conv2d_1a_3x3(x)# 149*149*32x = self.conv2d_2a_3x3(x)# 147*147*32x = self.conv2d_2b_3x3(x)# 147*147*64x = F.max_pool2d(x, kernel_size=3, stride=2)# 73*73*64x = self.conv2d_3b_1x1(x)# 73*73*80x = self.conv2d_4a_3x3(x)# 71*71*192x = F.max_pool2d(x, kernel_size=3, stride=2)# 35*35*192x = self.Mixed_5b(x)# 35*35*256x = self.Mixed_5c(x)# 35*35*288x = self.Mixed_5d(x)# 35*35*288x = self.Mixed_6a(x)# 17*17*768x = self.Mixed_6b(x)# 17*17*768x = self.Mixed_6c(x)# 17*17*768x = self.Mixed_6d(x)# 17*17*768x = self.Mixed_6e(x)# 17*17*768if self.training and self.aux_logits:aux = self.AuxLogits(x)# 17*17*768x = self.Mixed_7a(x)# 8*8*1280x = self.Mixed_7b(x)# 8*8*2048x = self.Mixed_7c(x)# 8*8*2048x = F.avg_pool2d(x, kernel_size=8)# 1*1*2048x = F.dropout(x, training=self.training)# 1*1*2048x = x.view(x.size(0), -1)# 2048x = self.fc(x)# num_classesif self.training and self.aux_logits:return x, auxreturn x

2.3.8 查看模型详情

# 统计模型参数量以及其他指标
import torchsummary# 调用并将模型转移到GPU中
model = InceptionV3().to(device)# 显示网络结构
torchsummary.summary(model, (3, 299, 299))
print(model)

        输出结果如下(由于内容较多,只展示前后部分内容):

(中间内容省略)

(中间内容省略)

2.4 训练模型

2.4.1 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出pred和真实值y之间的差距,y为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

2.4.2 编写测试函数

def test(dataloader, model, loss_fn):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0  # 初始化测试损失和正确率# 当不进行训练时,停止梯度更新,节省计算内存消耗# with torch.no_grad():for imgs, target in dataloader:  # 获取图片及其标签with torch.no_grad():imgs, target = imgs.to(device), target.to(device)# 计算误差tartget_pred = model(imgs)          # 网络输出loss = loss_fn(tartget_pred, target)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 记录acc与losstest_loss += loss.item()test_acc  += (tartget_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

2.4.3 正式训练

import copyoptimizer = torch.optim.Adam(model.parameters(), lr = 1e-4)
loss_fn = nn.CrossEntropyLoss() #创建损失函数epochs = 40train_loss = []
train_acc = []
test_loss = []
test_acc = []best_acc = 0 #设置一个最佳准确率,作为最佳模型的判别指标if hasattr(torch.cuda, 'empty_cache'):torch.cuda.empty_cache()for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)#scheduler.step() #更新学习率(调用官方动态学习率接口时使用)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)#保存最佳模型到best_modelif epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)#获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch: {:2d}. Train_acc: {:.1f}%, Train_loss: {:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr: {:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))PATH = './J7_best_model.pth'
torch.save(model.state_dict(), PATH)print('Done')

        输出结果如下:

2.5 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

        输出结果如下:

3 总结

        总体而言,Inception v3主要提出了分解卷积,将大卷积因式分解成小卷积核非对称卷积,体现在数学上就是矩阵的分解,即一个大矩阵可以分解成多个小矩阵相乘。

        由于简单的增大Inception网络的规模是不可行的,这样会导致计算效率变低,Inception v3在v2的基础上去除低层辅助分类器,高层辅助分类器加入BN层作为正则化器。将较大的卷积核分解为串联的小卷积核,能够进行维度缩减,同时小卷积核在多次串联后,并不会缩小感受野,进而提取的特征所代表的感受野不受影响。而并联卷积核池化,避免了表征瓶颈。这样同时增加宽度核深度,平衡了网络的宽度和深度,因此提高了网络的质量,优化了网络的特征提取效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/85388.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Jmeter集成到jenkins

Jmeter集成到Jenkins Jmeter集成到Jenkins. 1 软件下载... 4 一:环境配置... 4 1.JDK安装:... 4 配置JDK环境变量... 5 2.Jmeter安装:... 5 配置jmeter环境变量... 6 3.安装Ant 7 配置Ant环境变量... 7 4.Git安装:... 8 配置git环境…

C++笔试

数据大小 #define ll long long int 最大值:21,4748,3647 int 最小值:-2147483648 float 最大值:3.40282e38 float 最小值:1.17549e-38 double 最大值:1.79769e308 double 最小值:2.22507e-308 long 最…

Untiy UDP局域网 异步发送图片

同步画面有问题,传图片吧 using System.Text; using System.Net.Sockets; using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.Events; using System.Net; using System; using System.Threading.Tasks; using Sy…

java内嵌浏览器CEF-JAVA、jcef、java chrome

java内嵌浏览器CEF-JAVA、jcef、java chrome jcef是老牌cef的chrome内嵌方案,可以进行java-chrome-h5-桌面开发,下面为最新版本(2023年9月22日10:33:07) JCEF(Java Chromium Embedded Framework)是一个基于…

Cesium 空间量算——生成点位坐标

文章目录 需求分析1. 点击坐标点实现2. 输入坐标实现 需求 用 Cesium 生成点位坐标,并明显标识 分析 以下是我的两种实现方式 第一种是坐标点击实现 第二种是输入坐标实现 1. 点击坐标点实现 //点位坐标getLocation() {this.hoverIndex 0;let that this;this.view…

板子接线图

1.ST-LINK V2接线 2.对抗板子刷蓝牙固件 接USB转TTL,用镊子短接两个孔 2.对抗板子用串口测试蓝牙AT命令 短接白色箭头,接TX,RX,电源

brpc 学习(一)M1 MacOS构建方法

tags: brpc categories: brpc 写在前面 实习阶段初次接触到 RPC 这样一种协议, 以及 brpc 这样一个很棒的框架, 但是当时没时间认真深入学习, 就是围绕使用 demo 开发, 还是有点不知其所以然的, 最近抽空来学习一下 brpc, 首要的一点就是在开发机上构建项目, 并且能够跑起来,…

Debezium系列之:Debezium采集Mysql数据库,数据库时间字段值的变化

Debezium系列之:Debezium采集Mysql数据库,数据库时间字段值的变化 一、背景二、创建时间字段表三、设置数据库时区四、UTC时区时间字段值变化五、北京时区时间字段值变化一、背景 Debezium使用UTC时区来发出时间列,可以通过使用 CustomConverter来使用任意时区发出时间列。使…

MongoDB【部署 04】Windows系统实现MongoDB多磁盘存储

Windows系统实现多磁盘存储 1.为什么2.多磁盘存储2.1 数据库配置2.2 文件夹磁盘映射2.3 创建新的数据集 3.总结 1.为什么 这里仅针对只有一台Windows系统服务器的情景: 当服务器存储不足时,或者要接入更多的数据,就会挂载新磁盘&#xff0c…

边缘计算AI智能安防监控视频平台车辆违停算法详解与应用

随着城市车辆保有量呈现高速增长趋势,交通拥堵、违章行为也日益泛滥。因为车辆未停放在指定区域导致的车位浪费、占用/堵塞交通要道、车辆剐蹭等问题层出不穷。通过人工进行违法停车的监控,不仅让监控人员工作负荷越来越大,而且存在发现不及时…

信息化发展51

部署交付 1 、软件开发完成后, 必须部署在最终用户的正式运行环境, 交付给最终用户使用, 才能为用户创造价值。 2 、软件部署是一个复杂过程, 包括从开发商发放产品, 到应用者在他们的计算机上实际安装并维护应用的所…

Lua学习笔记:词法分析

前言 本篇在讲什么 Lua的词法分析 本篇需要什么 对Lua语法有简单认知 对C语法有简单认知 依赖Visual Studio工具 本篇的特色 具有全流程的图文教学 重实践,轻理论,快速上手 提供全流程的源码内容 ★提高阅读体验★ 👉 ♠ 一级标题…

SpringAOP补充-通知获取类型

JoinPoint 是 ProceedingJoinPoint 的父类。 getArgs()是JoinPoint获取原方法返回值的函数。 preceed()是ProceedingJoinPoint获取原方法返回值的函数。

【Java】Servlet API

Servlet API HttpServlet核心方法Servlet生命周期 HttpServletRequest核心方法 HttpServletResponse核心方法 HttpServlet 我们写 Servlet 代码的时候, 首先第一步就是先创建类, 继承自 HttpServlet, 并重写其中的某些方法. 核心方法 方法名称调用时机init在 HttpServlet 实…

近三年各领域数字孪生相关政策汇编(可下载)

自2021年国家“十四五”规划纲要提出“探索建设数字孪生城市”以来,国家发展和改革委员会、工业和信息化部、住房和城乡建设部、水利部、农业农村部等部门纷纷出台政策,大力推动数字孪生在千行百业的落地发展。这些政策不仅为数字孪生的应用提供了广阔的…

计算机网络高频面试题集锦

问题1:谈一谈对OSI七层模型和TCP/IP四层模型的理解? 回答点:七层模型每层对应的作用及相关协议、为什么分层、为什么有TCP/IP四层模型 参考: 1、OSI七层参考模型是一个ISO组织所提出的一个标准参考分层模型,它按照数…

Python自动化小技巧23——PDF文件拆分为单独页面(PyMuPDF)

其实编辑PDF用Adobe就行,它功能超级齐全,可是这玩意要收费...去弄免费破解版,找资源又得半天,所以用python来拆分PDF文件吧,可以批量化处理。 至于为什么不用WPS.....别问,问就是不想开会员。 脚本代码 先…

39 | selenium基础架构,UI测试架构

什么是测试基础架构? 测试基础架构指的是,执行测试的过程中用到的所有基础硬件设施以及相关的软件设施。因此,我们也把测试基础架构称之为广义的测试执行环境。通常来讲,测试基础架构主要包括以下内容: 执行测试的机器…

机器学习第十一课--K-Means聚类

一.聚类的概念 K-Means算法是最经典的聚类算法,几乎所有的聚类分析场景,你都可以使用K-Means,而且在营销场景上,它就是"King",所以不管从事数据分析师甚至是AI工程师,不知道K-Means是”不可原谅…

MATLAB | R2023b更新了哪些好玩的东西?

R2023b来啦!!废话不多说看看新版本有啥有趣的玩意和好玩的特性叭!!依旧把绘图放最前面叭,有图的内容看的人多。。 1 调色板 MATLAB终于不只有一套配色了,诸君且看: y [3 5 7 9 11; 2 5 6 8 1…