Prometheus PromQL

前言:

PromQL是Prometheus的查询语言,用于从Prometheus服务器中获取和处理时间序列数据。它采用了类似SQL的语法,但专门设计用于处理指标数据。PromQL具有灵活的查询能力,可以对指标进行过滤、聚合、计算和变换,以生成有意义的监控数据。

一 PromQL 简介

PromQL(Prometheus Query Language)是 Prometheus 内置的数据查询语言。支持用户进行实时的数据查询及聚合操作。

1 Prometheus 基于指标名称(metrics name)以及附属的标签集(labelset)唯一定义一条时间序列

●指标名称代表着监控目标上某类可测量属性的基本特征标识
●标签则是这个基本特征上再次细分的多个可测量维度

2 基于 PromQL 表达式,用户可以针对指定的特征及其细分的纬度进行过滤、聚合、统计等运算从而产生期望的计算结果

●PromQL 使用表达式(expression)来表述查询需求
●根据其使用的指标和标签,以及时间范围,表达式的查询请求可灵活地覆盖在一个或多个时间序列的一定范围内的样本之上,甚至是只包含单个时间序列的单个样本

3 Prometheus 数据模型

Prometheus 中,每个时间序列都由指标名称(Metric Name)和标签(Label)来唯一标识
格式为:<metric_name>{<label_name>=<label_value>, ...}

●指标名称:通常用于描述系统上要测定的某个特征
例如,prometheus_http_requests_total 表示接收到的 HTTP 请求总数

●标签:键值型数据,附加在指标名称之上,从而让指标能够支持多纬度特征;可选项
例如,prometheus_http_requests_total{code="200"} 和 prometheus_http_requests_total{code="302"} 代表着两个不同的时间序列

    ●双下划线的标签(例如 __address__ )是 Prometheus 系统默认标签,是不会显示在 /metrics 页面里面的;

    ●系统默认标签在 target 页面中也是不显示的,需要鼠标放到 label 字段上才会显示。

    ●常见的系统默认标签:
    __address__ :当前 target 实例的套接字地址 <host>:<port>
    __scheme__ :采集当前 target 上指标数据时使用的协议(http 或 https)
    __metrics_path__ :采集当前 target 上的指标数据时使用 URI 路径,默认为 /metrics
    __param_<name> :传递的 URL 参数中第一个名称为 <name> 的参数的值
    __name__ : 此标签是标识指标名称的预留标签,能够使用标签选择器对指标名称进行过滤

4 指标名称及标签使用注意事项

●指标名称和标签的特定组合代表着一个时间序列;指标名称相同,但标签不同的组合分别代表着不同的时间序列;不同的指标名称自然更是代表着不同的时间序列

●PromQL支持基于定义的指标维度进行过滤和聚合;更改任何标签值,包括添加或删除标签,都会创建一个新的时间序列;应该尽可能地保持标签的稳定性,否则,则很可能创建新的时间序列,更甚者会生成一个动态的数据环境,并使得监控的数据源难以跟踪,从而导致建立在该指标之上的图形、告警及记录规则变得无效

5 样本数据格式

Prometheus 的每个数据样本由两部分组成
●毫秒精度的时间戳
●float64 格式的数据 

prometheus_http_requests_total{code="200", handler="/targets", instance="localhost:9090", job="prometheus"}  @1434317560885         28
prometheus_http_requests_total{code="200", handler="/targets", instance="localhost:9090", job="prometheus"}  @1434317561483         35
prometheus_http_requests_total{code="200", handler="/targets", instance="localhost:9090", job="prometheus"}  @1434317562589         42
prometheus_http_requests_total{code="200", handler="/targets", instance="localhost:9090", job="prometheus"}  @1434317563654         50
|                            ||                                                                           |  |            |          |---------- 指标名称 --------  ------------------------ 标签 ---------------------------------------------    -- 时间戳 --        样本值

二 PromQL 的数据类型

1 PromQL 的表达式中支持 4 种数据类型:  

●即时向量 (Instant vector): 特定或全部的时间序列集合上,具有相同时间戳的一组样本值
●区间向量 (Range vector): 特定或全部的时间序列集合上,在指定的同一时间范围内的所有样本值
●标量数据 (Scalar): 一个浮点型的数据值
●字符串 (String): 一个字符串,支持使用单引号、双引号进行引用

2 时间序列选择器(Time series Selectors)

PromQL 的查询操作可能需要针对若干个时间序列上的样本数据进行,挑选出目标时间序列是构建表达式时最为关键的一步;

用户可使用向量选择器表达式来挑选出给定指标名称下的所有时间序列或部分时间序列的即时样本值或至过去某个时间范围内的样本值,前者称为瞬时向量选择器,后者称为区间向量选择器。

3 即时向量选择器(Instant Vector Selectors)

瞬时向量选择器可以返回 0 个、1 个或多个时间序列上在给定时间戳(instant)上的各自的一个样本。

① 即时向量选择器由两部分组成;

◆指标名称:用于限定特定指标下的时间序列,即负责过滤指标;可选
◆标签选择器:用于过滤时间序列上的标签;定义在 {} 之中;可选

② 定义即时向量选择器时,以上两个部分应该至少给出一个;因此存在以下三种组合:

◆仅给定指标名称,或在标签名称上使用了空值的标签选择器:返回给定的指标下的所有时间序列各自的即时样本
例如,prometheus_http_requests_total 和 prometheus_http_requests_total{} 的功能相同,都是用于返回这个指标下各时间序列的即时样本

◆仅给定标签选择器:返回所有符合给定的标签选择器的所有时间序列上的即时样本
例如,{code="200", job="prometheus"} ,这样的时间序列可能会有着不同的指标名称

◆指标名称和标签选择器的组合:返回给定的指标下的,且符合给定的标签过滤器的所有时间序列上的即时样本
例如,prometheus_http_requests_total{code="200", job="prometheus"},用于返回这个指标 code 为 200, 并且 job 为 prometheus 的时间序列的即时样本

匹配器

#标签选择器用于定义标签过滤条件,目前支持如下4种匹配操作符:
=  :完全相等
!= : 不相等
=~ : 正则表达式匹配
!~ : 正则表达式不匹配

注意事项:

◆匹配到空标签值的标签选择器时,所有未定义该标签的时间序列同样符合条件
例如,prometheus_http_requests_total{handler= ""},则该指标名称上所有未使用该标签(handler)的时间序列也符合条件

◆正则表达式将执行完全锚定机制,它需要匹配指定的标签的整个值

◆向量选择器至少要包含一个指标名称,或者至少有一个不会匹配到空字符串的标签选择器
例如,{ job=""} 为非法的向量选择器

◆使用 __name__ 做为标签名称,还能够对指标名称进行过滤
例如,{__name__=~".*http_requests_total"} 能够匹配所有以 http_requests_total 为后缀的所有指标

4 区间向量选择器(Range Vector Selectors)

区间向量选择器可以返回 0 个、1 个或多个时间序列上在给定时间范值围内的各自的一组样本。
区间向量选择器的不同之处在于,需要通过在瞬时向量选择器表达式后面添加包含在 [] 里的时长来表达需在时间时序上返回的样本所处的时间范围。

时间范围:以当前时间为基准时间点,指向过去一个特定的时间长度;例如,[5m] 是指过去 5 分钟之内。
◆可用的时间单位有 ms(毫秒)、s(秒)、m(分钟)、h(小时)、d(天)、w(周)和 y(年)
◆必须使用整数时间,且能够将多个不同级别的单位进行串联组合,以时间单位由大到小为顺序,例如 1h30m,但不能使用 1.5h

偏移向量选择器

前面介绍的选择器默认都是以当前时间为基准时间,偏移修饰器用来调整基准时间,使其往前偏移一段时间。偏移修饰器紧跟在选择器后面,使用关键字 offset 来指定要偏移的量。
例如,prometheus_http_requests_total offset 5m ,表示获取以 prometheus_http_requests_total 为指标名称的所有时间序列在过去 5 分钟之时的即时样本;
prometheus_http_requests_total[5m] offset 1d ,表示获取距此刻 1 天时间之前的 5 分钟之内的所有样本

5 向量表达式使用要点:

●表达式的返回值类型亦是即时向量、范围向量、标题或字符串4种数据类型其中之一,但是,有些使用场景要求表达式返回值必须满足特定的条件,例如:
(1)需要将返回值绘制成图形时,仅支持即时向量类型的数据;
(2)对于诸如 rate、irate 之类的速率函数来说,其要求使用的却又必须是区间向量型的数据

●由于区间向量选择器的返回的是区间向量型数据,它不能用于表达式浏览器中图形绘制功能

●区间向量选择器通常会结合速率类的函数 rate、irate 一同使用

三 PromQL 的指标类型

 PromQL 有四个指标类型:

●Counter :计数器,用于保存单调递增型的数据;例如站点访问次数等。数据单调递增,不支持减少,不能为负值,重启进程后,会被重置回 0 ;
●Gauge :仪表盘,用于存储有着起伏特征的指标数据,例如内存空闲大小等。数据可变大,可变小;重启进程后,会被重置;
●Histogram :累积直方图,将时间范围内的数据划分成不同的时间段,并各自评估其样本个数及样本值之和,因而可计算出分位数;
    ◆可用于分析因异常值而引起的平均值过大的问题;
    ◆分位数计算要使用专用的 histogram_quantile 函数;
●Summary :类似于 Histogram,但会在客户端直接计算并上报分位数;

1 Counter

通常,Counter 的总数并没有直接作用,而是需要借助于 rate、topk、increase 和 irate 等函数来生成样本数据的变化状况(增长率/变化率):
●topk(3, prometheus_http_requests_total),获取该指标下 http 请求总数排名前 3 的时间序列

●rate(prometheus_http_requests_total[1h]) ,获取 1 小内,该指标下各时间序列上的 http 总请求数的增长速率

●irate(prometheus_http_requests_total[1h])
irate 为高灵敏度函数,用于计算指标的瞬时速率,基于样本范围内的最后两个样本进行计算,相较于 rate 函数来说,irate 更适用于短期时间范围内的变化速率分析。

2 Gauge

Gauge 用于存储其值可增可减的指标的样本数据,常用于进行求和、取平均值、最小值、最大值等聚合计算;
也会经常结合 PromQL 的 delta 和 predict_linear 函数使用:
●delta 函数计算范围向量中每个时间序列元素的第一个值与最后一个值之差,从而展示不同时间点上的样本值的差值
例如,delta(cpu_temp_celsius{host="node01"}[2h]) ,返回该服务器上的CPU温度与2小时之前的差异

●predict_linear 函数可以预测时间序列 v 在 t 秒后的值,它通过线性回归的方式,对样本数据的变化趋势做出预测
例如,predict_linear(node_filesystem_free{job="node"}[2h], 4 * 3600) ,基于 2 小时的样本数据,来预测主机可用磁盘空间在 4 个小时之后的剩余情况

3 Histogram

对于 Prometheus 来说,Histogram 会在一段时间范围内对数据进行采样(通常是请求持续时长或响应大小等),并将其计入可配置的 bucket(存储桶)中 ,后续可通过指定区间筛选样本,也可以统计样本总数,最后一般将数据展示为直方图。

Prometheus 取值间隔的划分采用的是累积区间间隔机制,即每个 bucket 中的样本均包含了其前面所有 bucket 中的样本,因而也称为累积直方图。

Histogram 类型的每个指标有一个基础指标名称 <basename>,它会提供多个时间序列:
●<basename>_sum :所有样本值的总和

●<basename>_count :总的采样次数,它自身本质上是一个 Counter 类型的指标

●<basename>_bucket{le="<上边界>"} :观测桶的上边界,即样本统计区间,表示样本值小于等于上边界的所有样本数量
 <basename>_bucket{le="+Inf"} :最大区间(包含所有样本)的样本数量

使用 histogram 

在大多数情况下人们一般倾向于使用某些量化指标的平均值,例如 CPU 的平均使用率、页面的平均响应时间。这种方式的问题很明显,以系统 API 调用的平均响应时间为例:如果大多数 API 请求都维持在 100ms 的响应时间范围内,而个别请求的响应时间需要 5s,那么就会导致某些 Web 页面的响应时间落到中位数的情况,而这种现象被称为长尾问题。
为了区分是平均的慢还是长尾的慢,最简单的方式就是按照请求延迟的范围进行分组。例如,统计延迟在 0~10 ms 之间的请求数有多少,而 10~20 ms 之间的请求数又有多少。通过这种方式可以快速分析系统慢的原因。Histogram和Summary都是为了能够解决这样问题的存在,通过 Histogram 和 Summary 类型的监控指标,我们可以快速了解监控样本的分布情况。

http 请求响应时间 <= 0.005 秒 的请求次数为 10
prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="0.005"} 10http 请求响应时间 <= 0.01 秒 的请求次数为 15
prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="0.01"} 15http 请求响应时间 <= 0.025 秒 的请求次数为 18
prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="0.025"} 18
prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="0.05"} 18
prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="0.075"} 18
prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="0.1"} 18
prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="0.25"} 18
prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="0.5"} 18
prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="0.75"} 18
prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="1.0"} 18
prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="2.5"} 18
prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="5.0"} 20
prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="7.5"} 20
prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="+Inf"} 20所有样本值的大小总和,命名为 <basename>_sum
prometheus_http_request_duration_seconds_sum{handler="/metrics"} 10.107670803000001样本总数,命名为 <basename>_count ,效果与 <basename>_bucket{le="+Inf"} 相同
prometheus_http_request_duration_seconds_count{handler="/metrics"} 20

注意:

bucket 可以理解为是对数据指标值域的一个划分,划分的依据应该基于数据值的分布。注意后面的样本是包含前面的样本,假设 prometheus_http_request_duration_seconds_bucket{...,le="0.01"} 的值为 10,而 prometheus_http_request_duration_seconds_bucket{...,le="0.05"} 的值为 30 ,那么意味着这 30 个样本中,有 10 个是小于 0.01s 的,其余 20 个采样点的响应时间是介于 0.01s 和 0.05s 之间的。

累积间隔机制生成的样本数据需要额外使用内置的 histogram_quantile 函数即可根据 Histogram 指标来计算相应的分位数(quantile),即某个 bucket 的样本数在所有样本数中占据的比例。
●histogram_quantile 函数在计算分位数时会假定每个区间内的样本满足线性分布状态,因而它的结果仅是一个预估值,并不完全准确
●预估的准确度取决于bucket区间划分的粒度;粒度越大,准确度越低

例如,假设 http 请求响应时间的样本的 9 分位数(quantile=0.9)的上边界为 0.01,即表示小于等于 0.01 的样本值的数量占总体样本值的 90%
histogram_quantile(prometheus_http_request_duration_seconds_bucket{handler="/metrics",le="0.01"}) 0.9

4 Summary

Histogram 在客户端仅是简单的桶划分和分桶计数,分位数计算由 Prometheus Server 基于样本数据进行估算,因而其结果未必准确,甚至不合理的 bucket 划分会导致较大的误差。

Summary 是一种类似于 Histogram 的指标类型,但它在客户端于一段时间内(默认为 10 分钟)的每个采样点进行统计,计算并存储了分位数数值,Server 端直接抓取相应值即可。

对于每个指标,Summary 以指标名称 <basename> 为前缀,生成如下几个指标序列:
●<basename>_sum :统计所有样本值之和

●<basename>_count :统计所有样本总数

●<basename>{quantile="x"} :统计样本值的分位数分布情况,分位数范围:0 ≤ x ≤ 1

示例:

prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.5"} 0.012352463
prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.9"} 0.014458005
prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.99"} 0.017316173
prometheus_tsdb_wal_fsync_duration_seconds_sum 2.888716127000002
prometheus_tsdb_wal_fsync_duration_seconds_count 216

从上面的样本中可以得知当前Promtheus Server进行 wal_fsync 操作的总次数为 216 次,耗时 2.888716127000002s。 其中中位数(quantile=0.5)的耗时为 0.012352463s,9分位数(quantile=0.9)的耗时为0.014458005s。

#Histogram 与 Summary 的异同:
它们都包含了 <basename>_sum 和 <basename>_count 指标,Histogram 需要通过 <basename>_bucket 来计算分位数,而 Summary 则直接存储了分位数的值。

四 Prometheus 的聚合函数

一般说来,单个指标的价值不大,监控场景中往往需要联合并可视化一组指标,这种联合机制即是指“聚合”操作,例如,将计数、求和、平均值、分位数、标准差及方差等统计函数应用于时间序列的样本之上生成具有统计学意义的结果等。

对查询结果事先按照某种分类机制进行分组(group by)并将查询结果按组进行聚合计算也是较为常见的需求,例如分组统计、分组求平均值、分组求和等。

Prometheus 的聚合操作由聚合函数针对一组值进行计算并返回值作为结果。

1 Prometheus 内置提供的 11 个聚合函数,也称为聚合运算符:

●sum():对样本值求和
●min() :求取样本值中的最小者
●max() :求取样本值中的最大者
●avg() :对样本值求平均值
●count() :对分组内的时间序列进行数量统计
●stddev() :对样本值求标准差,以帮助用户了解数据的波动大小(或称之为波动程度)
●stdvar() :对样本值求方差,它是求取标准差过程中的中间状态
●topk() :逆序返回分组内的样本值最大的前 k 个时间序列及其值,即最大的 k 个样本值
●bottomk() :顺序返回分组内的样本值最小的前 k 个时间序列及其值,即最小的 k 个样本值
●quantile() :分位数,用于评估数据的分布状态,该函数会返回分组内指定的分位数的值,即数值落在小于等于指定的分位区间的比例
●count_values() :对分组内的时间序列的样本值进行数量统计,即等于某值的样本个数

2 PromQL 的聚合表达式

PromQL 中的聚合操作语法格式可采用如下面两种格式之一:
● <聚合函数>(向量表达式) by|without (标签)
● <聚合函数> by|without (标签) (向量表达式)

分组聚合:先分组、后聚合
by :仅使用by子句中指定的标签进行聚合,结果向量中出现但未被 by 指定的标签则会被忽略;
为了保留上下文信息,使用 by 子句时需要显式指定其结果中原本出现的 job、instance 等一类的标签。

without:从结果向量中删除由 without 指定的标签,未指定的那部分标签则用作分组标准

3 示例:

(1)每台主机 CPU 在最近 5 分钟内的平均使用率
(1 - avg(rate(node_cpu_seconds_total{mode="idle"}[5m])) by (instance)) * 100

(2)查询 1 分钟的 load average 的时间序列是否超过主机 CPU 数量 2 倍
node_load1 > on (instance) 2 * count (node_cpu_seconds_total{mode="idle"}) by (instance)

(3)计算主机内存使用率
可用内存空间:空闲内存、buffer、cache 指标之和
node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes

已用内存空间:总内存空间减去可用空间
node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)

使用率:已用空间除以总空间
(node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100

(4)计算所有 node 节点所有容器总计内存:
sum  by (instance) (container_memory_usage_bytes{instance=~"node*"})/1024/1024/1024

(5)计算 node01 节点最近 1m 所有容器 cpu 使用率:
sum (rate(container_cpu_usage_seconds_total{instance="node01"}[1m])) / sum (machine_cpu_cores{instance="node01"}) * 100
#container_cpu_usage_seconds_total 代表容器占用CPU的时间总和

(6)计算最近 5m 每个容器 cpu 使用情况变化率
sum (rate(container_cpu_usage_seconds_total[5m])) by (container_name)

(7)查询 K8S 集群中最近 1m 每个 Pod 的 CPU 使用情况变化率
sum (rate(container_cpu_usage_seconds_total{image!="", pod_name!=""}[1m])) by (pod_name) 
#由于查询到的数据都是容器相关的,所以最好按照 Pod 分组聚合

五 部署 Alertmanager 发送告警

Prometheus 对指标的收集、存储与告警能力分属于 Prometheus Server 和 AlertManager 两个独立的组件,前者仅负责定义告警规则生成告警通知, 具体的告警操作则由后者完成。

Alertmanager 负责处理由 Prometheus Server 发来的告警通知,Alertmanager对告警通知进行分组、去重后,根据路由规则将其路由到不同的receiver,如
Email、钉钉或企业微信等。

除了基本的告警通知能力外,Altermanager还支持对告警进行去重、分组、抑制、静默和路由等功能:
●分组(Grouping):将相似告警合并为单个告警通知的机制,在系统因大面积故障而触发告警潮时,分组机制能避免用户被大量的告警噪声淹没,进而导致关键信息的隐没

●抑制(Inhibition):系统中某个组件或服务故障而触发告警通知后,那些依赖于该组件或服务的其它组件或服务可能也会因此而触发告警,抑制便是避免类似的级联告警的一种特性,从而让用户能将精力集中于真正的故障所在

●静默(Silent):是指在一个特定的时间窗口内,即便接收到告警通知,Alertmanager也不会真正向用户发送告警信息的行为;通常,在系统例行维护期间,需要激活告警系统的静默特性

●路由(route):用于配置Alertmanager如何处理传入的特定类型的告警通知,其基本逻辑是根据路由匹配规则的匹配结果来确定处理当前告警通知的路径和行为

部署 Alertmanager

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/853729.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在表格中渲染轮播图的方法;

效果图&#xff1a;代码&#xff1a; shop()function shop() {// render()$.ajax({url: "http://jingxun.zhbbll.asia/pc/Commodity/shop_list", //要请求的后端地址type: "GET", //数据发送的方式(POST或者GET)dataType: JSON,headers: {token: token,id…

双Token方案实现Token自动续期(基于springboot+vue前后端分离项目)

文章目录 前言一、双Token方案介绍1. 令牌类型与功能2.双Token方案的优点3.实现流程 二、具体实现1.后端实现1.1 jwt工具类1.2 响应工具类1.3 实体类1.4 过滤器1.5 controller1.6 启动类 2、前端实现2.1 登录页面2.2 index页面2.3 请求拦截器和响应拦截器 效果展示 前言 更多j…

Elasticsearch 第一期:基础的基础概念

前言 Elasticsearch&#xff08;弹性搜索&#xff09; &#xff0c;简称为ES&#xff0c; 它是一个开源的高扩展的分布式全文检索引擎&#xff0c;它提供的功能主要分为&#xff1a;实时存储&#xff0c;实时分析搜索&#xff1b;本身扩展性很好&#xff0c;可以扩展到上百台服…

Java并发编程:利用CompletableFuture优化异步任务

在现代Java应用开发中&#xff0c;能够有效地处理异步任务是提升性能和用户体验的关键。Java 8引入的CompletableFuture提供了强大的工具&#xff0c;使得管理复杂的异步逻辑变得更简单。本文将探讨CompletableFuture的功能、用法及其在实际项目中的应用。 ### CompletableFut…

LeetCode 1731, 151, 148

目录 1731. 每位经理的下属员工数量题目链接表要求知识点思路代码 151. 反转字符串中的单词题目链接标签思路代码 148. 排序链表题目链接标签Collections.sort()思路代码 归并排序思路代码 1731. 每位经理的下属员工数量 题目链接 1731. 每位经理的下属员工数量 表 表Emplo…

【星座运势】本周财运分析,巨蟹座财富潜力大开!

大家好&#xff01;今天我们来谈谈巨蟹座本周的财富运势。经过调查和数据分析&#xff0c;我发现巨蟹座这周的财运潜力很大&#xff01;接下来&#xff0c;我将用通俗易懂的语言&#xff0c;通过代码说明&#xff0c;向大家展示巨蟹座的财富运势。 首先&#xff0c;我们需要通…

Java面试题:Redis哨兵模式

哨兵集群(sentinel) 实现主从集群的自动故障恢复 主从节点之间实现数据同步 哨兵的作用 监控 哨兵会不断检查主节点和从节点是否按照预期工作 自动故障恢复 如果主节点故障,哨兵会将从节点提升为主节点 当故障实例回复后以新的主节点为主 通知 哨兵充当Redis客户端的…

人工智能对零售业的影响

机器人、人工智能相关领域 news/events &#xff08;专栏目录&#xff09; 本文目录 一、人工智能如何改变零售格局二、利用人工智能实现购物体验自动化三、利用人工智能改善库存管理四、通过人工智能解决方案增强客户服务五、利用人工智能分析消费者行为六、利用 AI 打造个性化…

【javaEE-有关CPU进程和线程实现的并发编程及二者的区别】

&#x1f525;&#x1f525;&#x1f525;有关进程并发编程开发的成本问题 这次之前其实我们所有的写的程序都是使用单核心来运行的&#xff0c;但是一般我们的计算机都有很多核心&#xff0c;如果我们编程的时候&#xff0c;只使用一个核心的话&#xff0c;其实这是一个非常大…

【Java】Java 使用 Graphics2D 在图片上添加文字,并解决图片变红问题

文章目录 【Java】Java 使用 Graphics2D 在图片上添加文字&#xff0c;并解决图片变红问题完整案例 【Java】Java 使用 Graphics2D 在图片上添加文字&#xff0c;并解决图片变红问题 完整案例 public static void main(String[] args) {try {String filePath "D:\\Works…

使用源代码编译方式升级内核【笔记】

为什么要升级内核 升级内核有多个重要的原因,主要包括以下几点: 安全性:随着技术的发展,旧版本的内核可能会存在安全漏洞。黑客或恶意用户可能会利用这些漏洞进行攻击。升级内核可以修复这些已知的安全漏洞,从而提高系统的安全性。性能优化:新版本的内核通常会包含对性能…

打造成功的人力RPO项目:赢得市场赚取利润

人力资源外包(RPO)项目是当今企业在招聘和人才管理方面越来越倾向的选择。想要通过人力RPO项目赚钱&#xff0c;以下是一些关键的策略和步骤&#xff0c;帮助您进入这个市场并取得成功。 1. 建立专业的人力RPO服务 首先&#xff0c;要想在人力RPO项目中赚钱&#xff0c;必须建立…

9. 文本三剑客之awk

文章目录 9.1 什么是awk9.2 awk命令格式9.3 awk执行流程9.4 行与列9.4.1 取行9.4.2 取列 9.1 什么是awk 虽然sed编辑器是非常方便自动修改文本文件的工具&#xff0c;但其也有自身的限制。通常你需要一个用来处理文件中的数据的更高级工具&#xff0c;它能提供一个类编程环境来…

【CT】LeetCode手撕—20. 有效的括号

题目 原题连接&#xff1a;20. 有效的括号 1- 思路 模式识别 模式1&#xff1a;括号左右匹配 ——> 借助栈来实现 ——> Deque<Character> deque new LinkedList<>()模式2&#xff1a;顺序匹配 ——> 用 if 判断 具体思路 1.遇到左括号 直接入栈相应…

把本机的bash构建到docker镜像里面

最近突发奇想&#xff0c;想把本机的bash放到docker镜像里面&#xff0c;接下来看操作。 获取bash以及依赖 [rootbogon ~]# cat get_lib_info.sh #!/bin/bash# 函数&#xff1a;显示帮助信息 show_help() {echo "Usage: $(basename "$0") -h -f <file>…

FPGA IO_BANK、IO_STANDARD

描述 Xilinx 7系列FPGA和UltraScale体系结构提供了高性能&#xff08;HP&#xff09;和 高范围&#xff08;HR&#xff09;I/O组。I/O库是I/O块&#xff08;IOB&#xff09;的集合&#xff0c;具有可配置的 SelectIO驱动程序和接收器&#xff0c;支持多种标准接口 单端和差分。…

C# OpenCvSharp 代数运算-add、scaleAdd、addWeighted、subtract、absdiff、multiply、divide

在C#中使用OpenCvSharp进行图像处理时,理解和合理使用各种图像操作函数可以帮助我们实现许多实际应用中的需求。下面,我将详细介绍每个函数的使用,并给出与实际应用项目相关的示例,包括运算过程和运算结果。 1. add 函数 作用 将两幅图像进行相加,可以达到图像融合的目的…

JS中的延时操作setTimeout()和setInterval()

JS中&#xff0c;给我们提供两种延时操作的内置方法setTimeout()和setInterval()。setTimeout和setInterval方法都是挂载在javascript的window对象下&#xff0c;通过两个参数控制&#xff0c;第一个参数控制运行的表达式或方法&#xff0c;第二个参数表示延时的时间&#xff0…

【电路笔记】-共基极放大器

共基极放大器 文章目录 共基极放大器1、概述2、等效电路3、电流增益4、输入阻抗5、输出阻抗6、电压增益7、示例:电压、电流和功率增益8、总结1、概述 在本文中,我们将介绍双极晶体管放大器的最后一种拓扑,称为共基极放大器 (CBA)。 下面的图 1 显示了 CBA 的电气图,此处没…

vite-plugin-pwa 离线安装Vite应用

渐进式Web应用&#xff08;PWA&#xff09;通过结合 Web 和移动应用的特点&#xff0c;为用户带来更加流畅和快速的体验。且PWA支持离线访问能力&#xff08;访问静态资源本地缓存&#xff09;&#xff0c;极大提高了用户交互的流畅性&#xff0c;降低非必要的网络依赖。尤其适…