大模型系列:Prompt提示工程常用技巧和实践

前言

Prompt提示语是使用大模型解决实际问题的最直接的方式,本篇介绍Prompt提示工程常用的技巧,包括Zero-Shot、Few-Shot、CoT思维链、Least-to-Most任务分解。


内容摘要
  • Prompt提示工程简述
  • Prompt的一般结构介绍
  • 零样本提示Zero-Shot
  • 少样本提示Few-Shot
  • 思维链提示CoT
  • 任务分解Least-to-Most

Prompt提示工程简述

Prompt提示语,指的是设计和编写提示文本,以引导模型生成符合特定要求的语言输出。Prompt能够帮助语言模型回忆起自己在预训练时学习到的东西,合适的Prompt对于提示学习的效果至关重要,因此产生了提示工程专门研究如何设计Prompt,目的是找到最优的提示语,使得模型的性能和效率达到最高,以适应不同的任务和应用场景。

对各种模型设计不同的Prompt


Prompt的一般结构介绍

Prompt的一般结构包含4个部分,任务指令、背景信息、附加内容、输出要求

  • 任务指令:明确给到大模型需要执行的任务,比如扮演角色身份,给出内容方案
  • 背景信息:提供任务和上下文背景,从而生成更相关的输出
  • 附加内容:额外补充信息,包括领域知识库,参考样例等等
  • 输出要求:指定输出的格式,比如JSON格式,限定输出在某几个选项内,限制不允许编造成分等等

Prompt中并非要包含以上所有部分,可以根据需要自行组合搭配。举个例子,需要让大模型输出一个去苏州旅游的攻略,Prompt结构如下

Prompt结构式例


零样本提示Zero-Shot

零样本提示Zero-Shot,是指没有任何相关数据的参照下,直接对模型进行提问,用自然语言指令让模型输出内容完成一个任务,例如用通过对话模型生成式地完成情感分类任务

通过Zero-Shot进行情感分类

再例如完成命名实体识别的任务,提取出文本中的关键要素,从提取结果来看完全正确且没有遗漏,但是格式并没有按照要求的JSON来

Zero-Shot完成命名实体识别

Zero-Shot这种方式最为方便,但是由于没有任何相关数据给到模型参照,所以模型可能难以彻底按照任务要求和输出要求进行文本生成,尤其是对于难以用自然语言来描述清楚的任务。


少样本提示Few-Shot

少样本提示Few-Shot是指,在用自然语言描述的任务中加入少量相关的任务例子,使得模型更加充分地理解任务的目标和输出要求,增加任务完成的准确性,还是以情感分类为例,对模型进行Few-Shot如下

通过Few-Shot进行情感分类

同理针对命名实体识别,也可以给到一些例子,Few-Shot如下

Few-Shot完成命名实体识别提问

模型生成内容如下,模型提取得非常准确,并且模型参照了给的例子进行了JSON格式的输出,而在Zero-Shot中并虽然提示语句中要求了JSON格式,但并没有按照JSON生成,由此可推测Few-Shot下模型会更容易地参照用户的需求进行文本生成

Few-Shot完成命名实体识别结果

特别的,当给到的参考例子只有一条时,此时属于One-Shot提示。


思维链提示CoT

思维链提示(Chain-of-Thought,CoT),常用于推理规划类问题,包括逻辑推理,数学推理,常识推理等,相比于语言语境能力,推理问题对于大语言模型而言更难,因为对于推理问题,大模型的训练是把推理结果作为下一个词直接预测,而忽略了中间的思考过程,而人类在面对推理问题时往往是逐步求解,最后得到任务的答案。思维链提示的目的就是让明确告诉模型先输出中间过程,再逐步运算生成答案。
以一个简单的数学题问大模型(Chatglm2-6B),让模型计算出最后的结果,采用直接提问的方式,问题和回答如下

直接提问推理问题

很明显,模型回答的是错误的,正确答案应该是11,我们采用思维链提示的方式再试一次,具体是给到模型一条类似的题目,并且告诉模型解题步骤,解题步骤包括中间过程和最终的结果,使得对该类问题模型采用这种逐步的思考方式进行回答,提问和回答如下

思维链的方式提问推理问题

显然模型回答正确,且逻辑清晰,中间过程和结果都回答得很好。
除了给到参考解题例子之外,研究人员提出零样本思维链提示,只需要在问题结尾加上**”让我们逐步思考“**这个魔法语句,模型就能够实现逐步推理,我们以这种方式进行提问试验一下

零样本思维链提示回答推理问题

同样得到了正确的结果,显然思维链提示CoT对于推理问题比直接提问更有效。


任务分解Least-to-Most

任务分解,也被叫作由少到多提示(Least-to-Most),旨在当面对复杂提问时,将其转化为多个容易解决的子问题,并逐一解决它们得到最后的结果。任务分解的方式和思维链类似,区别在于任务分解会进行多轮问答,并且之前子问题的回答会加入到下一次的提问中,相当于逐步填充问题的上下文,降低复杂多步推理问题的难度。
我们同样先做对比,对模型直接提问一个计算题,问题和回答如下

直接对模型提问复杂问题

很明显答案错误,正确答案应该是5桶。下面我们采用任务分解的形式,首先提问模型解决这个问题需要先完成哪个子问题

回答子问题是什么

模型说了一大堆,第一句话就已经回答出了子问题,即要先解决购物劵总额的问题,我们将这个问题加入到原始提问中,让模型先回答出这个子问题的答案

回答子问题的答案

子问题回答正确,购物劵总额是500元,下一步就可以直通最终问题了,我们将子问题和子问题的答案拼接到原始提问上,形成最终的Prompt

最终模型回答为5桶,回答正确,且模型回答的逻辑清晰完美,印证了任务分解这种方式能够提高对复杂问题的推理准确性,全文完毕。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/853197.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nginx配置https协议(测试环境)

第一步申请证书 首先申请证书这一步,晚上有很多种方式实现,可以自己用算法实现,也可以找在线生成的网站,我这里使用了在线网站 https://www.toolhelper.cn/SSL/SSLGenerate 第二步将证书放到对应的目录下 这里我们主要用cert.pe…

探索大数据在信用评估中的独特价值

随着我国的信用体系越来越完善,信用将影响越来越多的人。现在新兴的大数据信用和传统信用,形成了互补的优势,大数据信用变得越来越重要,那大数据信用风险检测的重要性主要体现在什么地方呢?本文将详细为大家介绍一下,…

03-appium环境配置和启动参数设置

参考文章:https://blog.csdn.net/lovedingd/article/details/110949993 一、appium介绍 Appium是一个开源、跨平台的自动化测试框架,支持Android、IOS等平台,同时也支持多语言,比如:Java、Python等。 Appiumu通过扩展…

图论(一)之概念介绍与图形#matlab

图论(一)之概念介绍与图形目录 前言 一、图论介绍 二、基本概念 2.1图的概念 2.2图形分类 2.3邻接矩阵 2.3.1无向图 2.3.2有向图 2.3.3有向赋权图 2.4出度(Outdegree) 2.5入度(Indegree) 3.四种…

C语言 | Leetcode C语言题解之第145题二叉树的后序遍历

题目&#xff1a; 题解&#xff1a; void addPath(int *vec, int *vecSize, struct TreeNode *node) {int count 0;while (node ! NULL) {count;vec[(*vecSize)] node->val;node node->right;}for (int i (*vecSize) - count, j (*vecSize) - 1; i < j; i, --j)…

结构体对齐,与 触发 segment fault 为什么是 1024*132 ,而不是1024*128

1, 简单的小示例代码 按理说 malloc 的size 是 1024*128&#xff0c;这里却需要 1024*132才能及时触发 segmentation fault #include <stdlib.h> #include <stdio.h> #define SIZE 1024*131int main() {char *p 0;p malloc(SIZE);p[SIZE -1] a;free(p);printf(…

java学习 项目篇 一

学习地址&#xff1a;https://www.bilibili.com/video/BV1TP411v7v6?p6&spm_id_frompageDriver&vd_sourcea6f7db332f104aff6fadf5b3542e5875 后端环境搭建 Entity 实体&#xff0c;通常和数据库的表对应DTO 数据传输对象&#xff0c;用于程序中各层之间传递数据 (前端…

C++ PDF转图片

C PDF转图片#include "include/fpdfview.h" #include <fstream> #include <include/core/SkImage.h>sk_sp<SkImage> pdfToImg(sk_sp<SkData> pdfData) {sk_sp<SkImage> img;FPDF_InitLibrary(nullptr);FPDF_DOCUMENT doc;FPDF_PAGE …

Android采用Scroller实现底部二楼效果

需求 在移动应用开发中&#xff0c;有时我们希望实现一种特殊的布局效果&#xff0c;即“底部二楼”效果。这个效果类似于在列表底部拖动时出现额外的内容区域&#xff0c;用户可以继续向上拖动查看更多内容。这种效果可以用于展示广告、推荐内容或其他信息。 效果 实现后的…

算法01 递推算法及相关问题详解【C++实现】

目录 递推的概念 训练&#xff1a;斐波那契数列 解析 参考代码 训练&#xff1a;上台阶 参考代码 训练&#xff1a;信封 解析 参考代码 递推的概念 递推是一种处理问题的重要方法。 递推通过对问题的分析&#xff0c;找到问题相邻项之间的关系&#xff08;递推式&a…

MFC基础学习应用

MFC基础学习应用 1.基于对话框的使用 左上角为菜单键&#xff08;其下的关于MFC主要功能由IDD_ABOUTBOX决定) 附图 右下角为按钮&#xff08;基本功能由IDD_DIALOG决定,添加按钮使用由左上角的工具箱完成) 附图 2.自行添加功能与按钮//功能代码 void CMFCApplication4Dlg:…

JS基础与高级应用: 性能优化

在现代Web开发中&#xff0c;性能优化已成为前端工程师必须掌握的核心技能之一。本文从URL输入到页面加载完成的全过程出发&#xff0c;深入分析了HTTP协议的演进、域名解析、代码层面性能优化以及编译与渲染的最佳实践。通过节流、防抖、重复请求合并等具体技术手段&#xff0…

linux驱动学习(九)之中断

一、中断的实现 对于中断的请求&#xff0c;在linux内核中&#xff0c;有一套标准的接口函数&#xff0c;可以实现中断的响应和处理。 #include <linux/interrupt.h>//1 申请中断 static inline int __must_check request_irq(unsigned int irq, irq_handler_t handler…

flask南京市旅游景点信息可视化-计算机毕业设计源码02941

摘 要 信息化社会内需要与之针对性的信息获取途径&#xff0c;但是途径的扩展基本上为人们所努力的方向&#xff0c;由于站在的角度存在偏差&#xff0c;人们经常能够获得不同类型信息&#xff0c;这也是技术最为难以攻克的课题。针对南京市旅游景点信息可视化等问题&#xff0…

使用gtest做cpp的单元测试并可查看代码覆盖率

前言 由于工作需要&#xff0c;要使用googletest做单元测试&#xff0c;本文记录下搭建gtest单元测试环境&#xff0c;并查看代码覆盖率的方法&#xff0c;以备不时之需。 准备工作 编译gtest 克隆gtest源码&#xff1a; git clone https://github.com/google/googletest.g…

QUIC 和 TCP: 深入解析为什么 QUIC 更胜一筹

引言 在过去的三十年里&#xff0c;HTTP&#xff08;超文本传输协议&#xff09;一直是互联网的支柱。我们可以通过 HTTP 浏览网页、下载文件、流式传输电影等。这一协议随着时间的推移已经得到了重大改进。 HTTP 协议是一个应用层协议&#xff0c;它基于 TCP&#xff08;传输…

【git使用一】windows下git下载、安装和卸载

目录 &#xff08;1&#xff09;下载安装包 &#xff08;2&#xff09;安装git &#xff08;3&#xff09;安装验证 &#xff08;4&#xff09;卸载git &#xff08;1&#xff09;下载安装包 官网下载地址&#xff1a;Git 国内镜像下载地址&#xff1a;CNPM Binaries Mir…

Unity图集

概述 相信在同学们学习过程中&#xff0c;在UI的的使用时候一定经常听说过图集的概念。 Unity有UI的组件&#xff0c;有同学们好奇&#xff0c;那为什么还要使用图集呢&#xff1f; 这就需要提到一个性能优化的问题了&#xff0c;因为过多的UI图片&#xff0c;会大幅增加Dra…

【机器学习】LightGBM: 优化机器学习的高效梯度提升决策树

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 LightGBM: 优化机器学习的高效梯度提升决策树引言一、LightGBM概览二、核心技术…

buildroot编译出错you should not run configure as root

虚拟机版本&#xff1a;ubuntu-22.04.4 问题 buildroot在图形配置后&#xff0c;执行 sudo make开始编译出现以下错误configure: error: you should not run configure as root (set FOenvironment to bypass this check) 在网上看到说在/etc/profile文件中添加以下内容 exp…