opencv进阶 ——(十二)基于三角剖分实现人脸对齐

 三角剖分概念  

        三角剖分(Triangulation)是一种将多边形或曲面分解为一系列互不相交的三角形的技术,它是计算几何、计算机图形学、地理信息系统、工程和科学计算中的一个基本概念。通过三角剖分,复杂的形状可以被简化为基本的三角形元素,这些元素更容易处理和分析。

在二维空间中,一个简单的三角剖分将一个多边形划分为若干个不相交的三角形,这些三角形的边要么是多边形的边,要么是连接多边形内部点的边。在三维空间中,三角剖分通常应用于表面建模,将一个曲面分割成一系列互不相交的三角面片。

三角剖分有多种类型,其中最著名的一种是Delaunay三角剖分。在Delaunay剖分中,一个点的邻接三角形的内切圆(包含该点但不包含其他点的最小圆)是唯一的,且该点位于圆的外部。这种剖分在很多应用中非常有用,因为它保证了相邻三角形之间的良好分布,从而避免了过于狭长的三角形,这对于数值计算和图形渲染来说是理想的。

三角剖分在以下领域有广泛应用:

  • 计算机图形学:在3D建模和渲染中,用于将复杂的模型简化为三角面片,便于计算和显示。
  • 地理信息系统(GIS):用于将地图数据分割成三角形网格,便于空间分析和数据可视化。
  • 有限元分析(FEM):在工程计算中,用于将连续区域划分为离散的三角形单元,以便于数值求解偏微分方程。
  • 游戏开发:在游戏引擎中,用于减少模型的多边形数量,提高渲染效率。
  • 机器学习:在某些算法中,比如最近邻搜索,Delaunay三角剖分可以作为数据结构加速计算。

        三角剖分通常可以通过算法来实现,例如Graham扫描、 Jarvis March 或者更高效的算法如incremental方法和flip-based方法。在实际应用中,有许多现成的库和工具提供了三角剖分的功能,例如CGAL(Computational Geometry Algorithms Library)和Triangle库。 

人脸对齐实现   

实现步骤 

1、检测人脸区域

2、对人脸区域进行关键点标识

3、考虑到人脸可以存在倾斜,为了能更好的对齐效果,可以对关键点做旋转矩阵拟合

4、这里以经典的人脸68关键点为示例,为了边界部分更自然,可以对旋转矩阵进行扩展

5、将每一个三角形与目标三角形进行仿射变换得到一张与目标点对齐的人脸

代码实现

扩展旋转矩阵区域

void increaseRect(std::vector<cv::Point2f>& points,const cv::Mat& img)
{// 计算点集合构成的矩形的边界框cv::Rect rect = cv::boundingRect(points);// 定义增加比例float scale = 0.2;// 计算增加的宽度和高度int width = rect.width*scale;int height = rect.height*scale;// 定义增加值的lambda函数,用于安全地增加或减少一个值auto addVal = [](float& val, float add, float max){val = std::min(val + add, max); // 确保值不会超过最大值};auto subVal = [](float& val, float sub, float min){val = std::max(val - sub, min); // 确保值不会低于最小值};// 应用增加的宽度和高度来调整四个顶点的位置// 调整第一个点的x坐标和y坐标subVal(points[0].x, width, 0);addVal(points[0].y, height, img.rows);// 调整第二个点的x坐标和y坐标subVal(points[1].x, width, 0);subVal(points[1].y, height, 0);// 调整第三个点的x坐标和y坐标addVal(points[2].x, width, img.cols);subVal(points[2].y, height, 0);// 调整第四个点的x坐标和y坐标addVal(points[3].x, width, img.cols);addVal(points[3].y, height, img.rows);
}

增加边界点

void FillPointRect(const std::vector<cv::Point2f>& points,  std::vector<cv::Point>& vecPoint)
{// 临时存储扩充的点std::vector<cv::Point> addPointsTmp; // 根据原始点集,通过向每个点添加偏移量来生成新的点addPointsTmp.push_back(points[0] + cv::Point2f(1, -1));addPointsTmp.push_back(points[1] + cv::Point2f(1, +1));addPointsTmp.push_back(points[2] + cv::Point2f(-1, +1));addPointsTmp.push_back(points[3] + cv::Point2f(-1, -1));// 通过现有点计算并加入新的点,以构成矩形的外接多边形addPointsTmp.push_back((addPointsTmp[0]  + addPointsTmp[1])/2);addPointsTmp.push_back((addPointsTmp[1]  + addPointsTmp[2])/2);addPointsTmp.push_back((addPointsTmp[2]  + addPointsTmp[3])/2);addPointsTmp.push_back((addPointsTmp[3]  + addPointsTmp[0])/2);// 将扩充的点集添加到输出向量中vecPoint.insert(vecPoint.end(), addPointsTmp.begin(), addPointsTmp.end());
}

获取所有的三角形下标

//获取三角形下标
std::vector<cv::Vec3i> Triangulation::getTrianglesIndexs(std::vector<cv::Vec6f>& triangleList, std::vector<cv::Point>& vecPoint)
{auto findPoint = [&vecPoint](cv::Point& p){for (int i = 0; i < vecPoint.size(); i++){if (vecPoint[i] == p){return i;}    }return -1;};std::vector<cv::Vec3i> trianglesIndexs;for (auto& item : triangleList){cv::Point p1 = cv::Point(item[0], item[1]);cv::Point p2 = cv::Point(item[2], item[3]);cv::Point p3 = cv::Point(item[4], item[5]);auto idx1 = findPoint(p1);auto idx2 = findPoint(p2);auto idx3 = findPoint(p3);if (idx1 != -1 && idx2 != -1 && idx3 != -1){trianglesIndexs.push_back(cv::Vec3i(idx1, idx2, idx3));}}return trianglesIndexs;
}

绘制三角剖分图

std::vector<cv::Point> vecPoint = item.boxPoint;auto rotateRect = cv::minAreaRect(vecPoint);cv::Point2f pot[4];rotateRect.points(pot);std::vector<cv::Point2f> rotatePoints{pot[0], pot[1], pot[2], pot[3]};increaseRect(rotatePoints, img);FillPointRect(rotatePoints, vecPoint);std::vector<cv::Point> vecHull;cv::convexHull(vecPoint, vecHull);auto rect = cv::boundingRect(vecHull);cv::Subdiv2D subdiv(rect);std::vector<cv::Point2f> vecPoint2f;for (auto& ptIt : vecPoint){vecPoint2f.emplace_back(cv::Point2f(ptIt.x, ptIt.y));}subdiv.insert(vecPoint2f);std::vector<cv::Vec6f> triangleList;subdiv.getTriangleList(triangleList);auto trianglesIndexs = std::move(getTrianglesIndexs(triangleList, vecPoint));for (auto& item : trianglesIndexs){cv::Point pt1 = vecPoint[item[0]];cv::Point pt2 = vecPoint[item[1]];cv::Point pt3 = vecPoint[item[2]];cv::line(destDataOut->img(), pt1, pt2, 255);cv::line(destDataOut->img(), pt2, pt3, 255);cv::line(destDataOut->img(), pt3, pt1, 255);}

人脸对齐

cv::Mat alignmentImageData(const cv::Mat& srcImg, const cv::Rect& srcBox, std::vector<cv::Point> vecPointRoi, std::vector<cv::Point> vecDestPointRoi)
{auto srcImgRoi = srcImg(srcBox);//构建三角剖分,获取三角形下标cv::Subdiv2D subdiv(cv::Rect(0, 0, srcBox.width, srcBox.height));std::vector<cv::Point2f> vecPoint2f;vecPoint2f.insert(vecPoint2f.end(), vecPointRoi.begin(), vecPointRoi.end());subdiv.insert(vecPoint2f);std::vector<cv::Vec6f> triangleList;subdiv.getTriangleList(triangleList);auto trianglesIndexs = std::move(getTrianglesIndexs(triangleList, vecPointRoi));qDebug() << "triangles size:" << trianglesIndexs.size();cv::Mat destNewImg = srcImgRoi.clone();auto maxRoiSize = srcImgRoi.size();for (auto& item : trianglesIndexs){cv::Point tr1Pt1 = vecPointRoi[item[0]];cv::Point tr1Pt2 = vecPointRoi[item[1]];cv::Point tr1Pt3 = vecPointRoi[item[2]];auto rect1 = cv::boundingRect(std::vector<cv::Point>{tr1Pt1, tr1Pt2, tr1Pt3});auto croppedTriangle = srcImgRoi(rect1);cv::Point rect1Beg = cv::Point(rect1.x, rect1.y);cv::Point tr2Pt1 = vecDestPointRoi[item[0]];cv::Point tr2Pt2 = vecDestPointRoi[item[1]];cv::Point tr2Pt3 = vecDestPointRoi[item[2]];auto rect2 = cv::boundingRect(std::vector<cv::Point>{tr2Pt1, tr2Pt2, tr2Pt3});cv::Mat croppedTr2Mask = cv::Mat::zeros(rect2.size(),  CV_8UC1);//生成模板图像三角形掩码cv::Point rect2Beg = cv::Point(rect2.x, rect2.y);std::vector<cv::Point> maskPoints2 = {tr2Pt1 - rect2Beg, tr2Pt2 - rect2Beg, tr2Pt3 - rect2Beg};cv::fillConvexPoly(croppedTr2Mask, maskPoints2, 255);cv::Point2f srcTri[3] = {tr1Pt1 - rect1Beg, tr1Pt2 - rect1Beg, tr1Pt3 - rect1Beg};cv::Point2f dstTri[3] = {tr2Pt1 - rect2Beg, tr2Pt2 - rect2Beg, tr2Pt3 - rect2Beg};auto warpMat = cv::getAffineTransform(srcTri, dstTri);cv::Mat warpTriangle;cv::warpAffine(croppedTriangle, warpTriangle, warpMat, rect2.size());cv::bitwise_and(warpTriangle, warpTriangle, warpTriangle, croppedTr2Mask);cv::Mat roi = destNewImg(rect2);warpTriangle.copyTo(roi, croppedTr2Mask);}return  destNewImg;
}

人脸68关键点和5关键点三角剖分图

人脸对齐

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/849053.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

病理级Polymer酶标二抗IHC试剂盒上线!

免疫组织化学 Immunohistochemistry,lHC 是利用抗体与抗原特异性识别原理&#xff0c;对组织样本中的抗原进行定位/定性分析的实验技术。组织切片保留了样品的解剖学结构特征&#xff0c;从而可以高分辨率地显现蛋白在细胞&#xff0c;甚至细胞器中的定位。基于以上特性&…

生物相容性CY5.5-D-甘露糖细胞生物学研究

随着生物医学研究的深入发展&#xff0c;荧光标记技术在细胞生物学中的应用日益广泛。其中&#xff0c;CY5.5-D-甘露糖作为一种新型的荧光标记物&#xff0c;不仅继承了CY5.5荧光染料的光学性能&#xff0c;还结合了D-甘露糖的生物学特性&#xff0c;因此在细胞成像、药物研发等…

DBus 在Qt和C++中的使用Demo

一、DBus DBus&#xff08;D-Bus&#xff09;是一种跨进程通信机制&#xff0c;是一种消息总线系统。DBus提供了一种在应用程序之间进行通信和交互的方式&#xff0c;可以在不同的进程之间传递消息&#xff0c;并提供了一套API供开发者使用。 二、Qt中使用 功能&#xff1a;先获…

Apple - Image I/O Programming Guide

翻译自&#xff1a;Image I/O Programming Guide&#xff08;更新时间&#xff1a;2016-09-13 https://developer.apple.com/library/archive/documentation/GraphicsImaging/Conceptual/ImageIOGuide/imageio_intro/ikpg_intro.html#//apple_ref/doc/uid/TP40005462 文章目录 …

orbslam2代码解读(1):数据预处理过程

写orbslam2代码解读文章的初衷 首先最近陆陆续续花了一两周时间学习视觉slam&#xff0c;因为之前主要是做激光slam&#xff0c;有一定基础所以学的也比较快&#xff0c;也是看完了视觉14讲的后端后直接看orbslam2的课&#xff0c;看的cvlife的课&#xff08;课里大部分是代码…

jenkins的简单使用

2.1.简介 Jenkins是一个开源软件项目&#xff0c;是基于Java开发的一种持续集成工具&#xff0c;用于监控持续重复的工作&#xff0c;旨在提供一个开放易用的软件平台&#xff0c;使软件的持续集成变成可能。 2.4.Jenkins安装 1.下载安装包jenkins.war&#xff1b; 2.在安装…

笔记 | 软件工程04:软件项目管理

1 软件项目及其特点 1.1 什么是项目 1.2 项目特点 1.3 影响项目成功的因素 1.4 什么是软件项目 针对软件这一特定产品和服务的项目努力开展“软件开发活动",&#xff08;理解&#xff1a;软件项目是一种活动&#xff09; 1.5 软件项目的特点 1.6 军用软件项目的特点 2 …

一、搭建 Vue3 Admin 项目:从无到有的精彩历程

在前端开发的领域中&#xff0c;Vue3 展现出了强大的魅力&#xff0c;而搭建一个功能丰富的 Vue3 Admin 项目更是充满挑战与乐趣。今天&#xff0c;我将和大家分享我搭建 Vue3 Admin 项目的详细过程&#xff0c;其中用到了一系列重要的依赖包。 首先 让我们开启这个旅程。在确…

怎么用电脑把图片转换二维码?图片在线生成二维码的步骤内容

现在很多人会通过二维码来存储物品的信息图片&#xff0c;其他人可以通过扫描二维码的方式来查看对应的图片内容&#xff0c;那么当我们需要将一批图片每个单独生成二维码&#xff0c;该如何操作能够快速将图片转换二维码呢&#xff1f; 今天&#xff0c;小编来分享给大家一个…

CNN卷积神经网络

一、概述 卷积神经网络&#xff08;CNN&#xff09;是深度学习领域的重要算法&#xff0c;特别适用于处理具有网格结构的数据&#xff0c;比如说图像和音频。它起源于二十世纪80至90年代&#xff0c;但真正得到快速发展和应用是在二十一世纪&#xff0c;随着深度学习理论的兴起…

【ai】phc:安装issac环境且fix libstdc++.so 版本报错

Pycharm远程连接服务器(2023-11-9) 大神分享了pycharm远程连接ubuntu工作站的方法。 https://github.com/ZhengyiLuo/PHC 给出的操作同样适用: 参考 Pycharm远程连接服务器(2023-11-9) :前提是一样的 PHC的要求:isaac 创建 conda activate isaac

前端js 元素拖拽案例

js原生元素拖拽案例 下面是一个简单的使用原生 JavaScript 实现元素拖拽的代码示例&#xff1a; <!DOCTYPE html> <html> <head><style>.draggable {width: 100px;height: 100px;background-color: red;position: absolute;cursor: move;}</style&…

【Vue】scoped解决样式冲突

默认情况下写在组件中的样式会 全局生效 → 因此很容易造成多个组件之间的样式冲突问题。 全局样式: 默认组件中的样式会作用到全局&#xff0c;任何一个组件中都会受到此样式的影响 局部样式: 可以给组件加上scoped 属性,可以让样式只作用于当前组件 一、代码示例 BaseOne…

【springbootneo4j】版本差异对比

Spring官方提供的指南&#xff0c;包含如何使用Spring Data Neo4j构建应用程序的入门教程 本文旨在向读者介绍Spring Data Neo4j的旧版本&#xff08;主要使用Neo4j OGM&#xff09;和新版本&#xff08;最新的Spring Data Neo4j&#xff09;之间的主要差异。我们将重点讨论注解…

RocketMQ可视化界面安装

RocketMQ可视化界面安装 **起因&#xff1a;**访问rocketmq-externals项目的git地址&#xff0c;下载了源码&#xff0c;在目录中并没有找到rocketmq-console文件夹。 git下面文档提示rocketMQ的仪表板转移到了新的项目中&#xff0c;点击仪表板到新项目地址&#xff1b; 下载…

需求分析步骤

需求工程 1.需求获取 1.1系统分析人员与用户交流 1.2对现有系统的观察 1.3对任务进行分析确定系统或产品范围的限制性描述 1.4与系统或产品有关的人员及特征列表 1.5系统的技术环境描述 1.6系统功能的列表及应用于每个需求的领域限制 1.7一组描述不同运行条件下系统或产品使用…

vuex 快速入门

1.是什么 Vuex 是一个 Vue 的 状态管理工具&#xff0c;状态就是数据。 大白话&#xff1a;Vuex 是一个插件&#xff0c;可以帮我们管理 Vue 通用的数据 (多组件共享的数据)。例如&#xff1a;购物车数据 个人信息数 2 .核心概念 - state 状态 State提供唯一的公共数据源&a…

搜索与图论:宽度优先搜索

搜索与图论&#xff1a;宽度优先搜索 题目描述参考代码 题目描述 输入样例 5 5 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0输出样例 8参考代码 #include <iostream> #include <algorithm> #include <cstring> using namespace std;const int N …

VsQt单元测试目录的管理方式

正常项目的文件管理方式 正常项目的目录&#xff0c;是由文件系统中实际的文件夹进行分类管理的。 但是如果单元测试用实际文件夹管理的话&#xff0c;会出现问题&#xff0c;就是被测类太多了&#xff0c;用文件系统管理的话&#xff0c;不太方面查看&#xff0c;如下图所示。…

contentType 与 dataType

contentType 与 dataType contentType contentType&#xff1a;发送的数据格式&#xff08;请求方发送给服务器的数据格式&#xff09;&#xff0c;这个内容会放在请求方的 请求头中 application/x-www-form-urlencoded 这个是默认的请求格式。 提交给后台的数据会按照 KV&am…