【高阶数据结构(八)】跳表详解

💓博主CSDN主页:杭电码农-NEO💓

⏩专栏分类:高阶数据结构专栏⏪

🚚代码仓库:NEO的学习日记🚚

🌹关注我🫵带你学习更多数据结构
  🔝🔝


在这里插入图片描述

高阶数据结构

  • 1. 前言
  • 2. 跳表的概念
  • 3. 跳表的特性分析
  • 4. 跳表的效率分析
  • 5. 跳表模拟实现
  • 7. 跳表和传统查找结构的对比
  • 8. 总结

1. 前言

跳表也是一种查找结构,和红黑树,哈希的价值是一样的,那么跳表的优势是什么呢?

本章重点:

本篇文章会着重讲解跳表的基本概念和特性, 讲解实现跳表的逻辑,以及手撕一个跳表. 最后会将跳表和红黑树/哈希进行对比, 分析优势和缺点


2. 跳表的概念

跳表是基于有序链表的基础上发展而来的

在这里插入图片描述

有序链表的查找效率为O(N). 优化策略:

  1. 假如每相邻两个节点升高一层,增加一个指针,让指针指向下下个节点,如图b。这样所有新增加的指针连成了一个新的链表,但它包含的节点个数只有原来的一半。由于新增加的指针,我们不再需要与链表中每个节点逐个进行比较了,需要比较的节点数大概只有原来的一半

在这里插入图片描述

  1. 以此类推,我们可以在第二层新产生的链表上,继续为每相邻的两个节点升高一层,增加一个指针,从而产生第三层链表。如下图c,这样搜索效率就进一步提高了。

在这里插入图片描述

  1. 跳表正是受这种多层链表的想法的启发而设计出来的。这样设计确实可以大大提高效率,但问题是,一旦此结构进行插入或删除, 整个跳表的规则就会被打乱. 插入/删除一个元素后, 后面节点的高度可能就不符合跳表的规则了.

跳表的发明者为了避免上诉情况,设计了这样的一种结构:

在这里插入图片描述

  1. skiplist的设计为了避免这种问题,做了一个大胆的处理,不再严格要求对应比例关系,而是插入一个节点的时候随机出一个层数。这样每次插入和删除都不需要考虑其他节点的层数,这样就好处理多了

3. 跳表的特性分析

拿下图举例:

在这里插入图片描述

查找19分析:

从头节点的最上面的节点开始, next=6,19大于6.直接向右跳到6. next=空,向下走,next=25.25大于19.再向下走. next=9.19大于9,向右走到9. next=17. 19大于17, 向右跳到17. next=25. 25大于19.向下走. next=19.找到19. 总结: 比它大, 向右走. 比它小, 向下走

插入/删除分析:

插入和删除操作的关键都是, 找到此位置的每一层节点的前一个和后一个节点. 插入和删除和其他节点无关, 只需要修改每一层的next指针指向即可. 比如现在要在节点7和9之间插入节点8. 节点8假设是三层. 那么插入只需要考虑节点8的第一层和第二层的前一个节点是6,而第三层的前一个节点是7. 第一层的后一个节点是25.第二层的后一个节点是9.第三次的后一个节点也是9. 依次改变指针知晓即可.


4. 跳表的效率分析

上面我们说到,skiplist插入一个节点时随机出一个层数,听起来怎么这么随意,如何保证搜索时
的效率呢?这里首先要细节分析的是这个随机层数是怎么来的。一般跳表会设计一个最大层数maxLevel的限制,其次会设置一个多增加一层的概率p。那么计算这个随机层数的伪代码如下图:

在这里插入图片描述

p代表概率,maxlevel代表最高层数

在这里插入图片描述

根据前面randomLevel()的伪码,我们很容易看出,产生越高的节点层数,概率越低。定量的分析如下:

  • 节点层数至少为1。而大于1的节点层数,满足一个概率分布。
  • 节点层数恰好等于1的概率为1-p
  • 节点层数大于等于2的概率为p,而节点层数恰好等于2的概率为p(1-p)
  • 节点层数大于等于3的概率为p^ 2,而节点层数恰好等于3的概率为p^2*(1-p)
  • 节点层数大于等于4的概率为p^ 3,而节点层数恰好等于4的概率为p^3*(1-p)

在这里插入图片描述

综上所述,跳表的平均时间复杂度为: O(logN)


5. 跳表模拟实现

首先是跳表的节点构造:

struct SkipListNode {int _val;vector<SkipListNode*> _nextv;SkipListNode(int val, int height) :_val(val), _nextv(height, nullptr){}
};

链表的多层结构可以抽象为vector, 而每一层的高度在初始化此节点时再使用随机算法来计算. 这里我们设置p为0.5,maxlevel为32. 写死它,当然后续你也可以做拓展

跳表的增删查改:

class Skiplist {typedef SkipListNode node;
public:Skiplist() {//头节点层数先给1层_head = new node(-1, 1);srand(time(0));}bool search(int target) {node* cur = _head;int level = _head->_nextv.size() - 1;while (level >= 0){//和cur->next[level]比较,比它小就向下走,比它大向右走if (cur->_nextv[level] && cur->_nextv[level]->_val < target)cur = cur->_nextv[level];//下一个节点是空,即是尾,也要向下走else if (!cur->_nextv[level] || cur->_nextv[level]->_val > target)level--;else return true;}return false;}vector<node*> FindPrevNode(int num){node* cur = _head;int level = _head->_nextv.size() - 1;vector<node*> prev(level + 1, _head);//用于保存每一层的前一个while (level >= 0){//一旦要向下走了,就可以更新了,向右走不需要动if (cur->_nextv[level] && cur->_nextv[level]->_val < num)cur = cur->_nextv[level];else if (cur->_nextv[level] == nullptr || cur->_nextv[level]->_val >= num){prev[level] = cur;--level;}}return prev;}void add(int num) {vector<node*> prev = FindPrevNode(num);int n = RandomLevel();node* newnode = new node(num, n);if (_head->_nextv.size() < n){_head->_nextv.resize(n, nullptr);prev.resize(n, _head);}//链接前后节点即可for (int i = 0; i < n; i++){//新节点的下一个是prev的下一个newnode->_nextv[i] = prev[i]->_nextv[i];prev[i]->_nextv[i] = newnode;}}bool erase(int num) {//要删除你,先找到此节点的每层的前一个,和插入时相似vector<node*> prev = FindPrevNode(num);//代表这个值不存在, 最下层找不到它,它就一定不存在if (prev[0]->_nextv[0] == nullptr || prev[0]->_nextv[0]->_val != num)return false;node* del = prev[0]->_nextv[0];for (int i = 0; i < del->_nextv.size(); i++)prev[i]->_nextv[i] = del->_nextv[i];delete del;return true;}int RandomLevel(){int level = 1;while (rand() < RAND_MAX * _p && level < _max)level++;return level;}void Print(){int level = _head->_nextv.size();for (int i = level - 1; i >= 0; --i){node* cur = _head;while (cur){printf("%d->", cur->_val);cur = cur->_nextv[i];}printf("\n");}}
private:node* _head;size_t _max = 32;double _p = 0.5;
};

代码的解释都在注释中,不懂欢迎私信


7. 跳表和传统查找结构的对比

  1. skiplist相比平衡搜索树(AVL树和红黑树)对比,都可以做到遍历数据有序,时间复杂度也差不多。skiplist的优势是:a、skiplist实现简单,容易控制。平衡树增删查改遍历都更复杂。 b、skiplist的额外空间消耗更低。平衡树节点存储每个值有三叉链,平衡因子/颜色等消耗。skiplist中p=1/2时,每个节点所包含的平均指针数目为2;skiplist中p=1/4时,每个节点所包含的平均指针数目为1.33;

  2. skiplist相比哈希表而言,就没有那么大的优势了。相比而言a、哈希表平均时间复杂度是O(1),比skiplist快。b、哈希表空间消耗略多一点。skiplist优势如下:a、遍历数据有序 b、skiplist空间消耗略小一点,哈希表存在链接指针和表空间消耗。c、哈希表扩容有性能损耗。d、哈希表再极端场景下哈希冲突高,效率下降厉害,需要红黑树补足接力。


8. 总结

本篇文章是高阶数据结构的最后一篇文章. 高阶数据结构的学习之路就到此为止.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/847446.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python下用cartopy绘制地形晕染(shading)图

python可以利用rasterio&#xff0c;cartopy&#xff0c;matplotlib等库绘制地形晕染图。 1.获取高程数据 高程数据可以从GEBCO网站下载&#xff1a;&#xff08;https://www.gebco.net/data_and_products/gridded_bathymetry_data/&#xff09;。 选择raster&#xff08;栅…

浅谈一些AIGC赚钱赛道

前段时间&#xff0c;做过一期关于AIGC的分享。 ​缘起于近两年看到 DELL E 到 Stable Diffusion 多模态文本可控图像生成的大火&#xff0c;让AIGC概念涨了一大波流量。百度等一些头部大厂&#xff0c;以及关注元宇宙、web3.0领域的很多媒体和公司&#xff0c;都蹭上了这波热…

el-table动态配置显示表头

在实际工作中&#xff0c;会遇到动态配置e-table表头的情况&#xff0c;如下方法可以实现&#xff1a; // 要展示的列 column: [{prop: name, name: 名称 }, {prop: age, name: 年龄 }, {prop: sex, name: 性别 }, {prop: address, name: 地址 }, {prop: city, name: 城市 }]…

生活旅游数据恢复:全国违章查询

【步骤一&#xff1a;备份数据】 在开始数据恢复之前&#xff0c;首先要做的是备份现有的数据。虽然这一步不直接涉及到数据恢复&#xff0c;但万一在恢复过程中出现问题&#xff0c;您还可以回滚到备份&#xff0c;以避免数据丢失。 打开全国违章查询app。在主界面上找到并点…

量化投资分析平台 迅投 QMT(二)

量化投资分析平台 迅投 QMT [迅投 QMT](https://www.xuntou.net/?user_code7NYs7O)我目前在使用如何获取数据上代码历史帖子 迅投 QMT 我目前在使用 两个月前&#xff08;2024年4月&#xff09;迅投和CQF有一个互动的活动&#xff0c;进行了平台的一个网上路演&#xff0c;刚…

数据隐私重塑:Web3时代的隐私保护创新

随着数字化时代的不断深入&#xff0c;数据隐私保护已经成为了人们越来越关注的焦点之一。而在这个数字化时代的新篇章中&#xff0c;Web3技术作为下一代互联网的代表&#xff0c;正在为数据隐私保护带来全新的创新和可能性。本文将深入探讨数据隐私的重要性&#xff0c;Web3时…

WSDM 2023 推荐系统相关论文整理(二)

WSDM 2023的论文录用结果已出&#xff0c;推荐系统相关的论文方向包含序列推荐&#xff0c;点击率估计等领域&#xff0c;涵盖图学习&#xff0c;对比学习&#xff0c;因果推断&#xff0c;知识蒸馏等技术&#xff0c;累计包含近四十篇论文&#xff0c;下文列举了部分论文的标题…

STM32H750外设ADC之外部触发和注入管理

目录 概述 1 外部触发转换和触发极性 1.1 外部触发条件 1.2 忽略硬件触发条件 1.3 触发框图 1.4 常规通道的外部触发 1.5 注入通道的外部触发 2 注入通道管理 2.1 触发注入模式 2.2 自动注入模式 2.3 注入转换延迟 概述 本文主要介绍STM32H750外设ADC之外部触发和注…

Win10 TiKV单机单节点Docker部署测试

1. 环境 环境&#xff1a;Windows10、WSL2、Ubuntu20.04、Docker Desktop目标&#xff1a;单节点单机部署&#xff0c;测试用 2. 前置操作 docker pull pingcap/tikv:latest docker pull pingcap/pd:latestmkdir -p /mnt/tikv/pd mkdir -p /mnt/tikv/tikvip a 命令查看虚拟…

PROFINET转CANOPEN(WL-ABC3033)连接台达伺服驱动器ASDA-B3

在工业自动化领域这片广阔天地中&#xff0c;通信协议的转换犹如一道横亘在工程师们面前的难题。特别是在将众多采用不同通信协议的设备汇聚一堂&#xff0c;共同协作完成任务的场景中&#xff0c;如何确保数据如丝般顺滑地穿梭于各个节点之间&#xff0c;确保每台设备都能心领…

智慧社区信息化建设整体解决方案(PPT原件获取及软件各类建设方案)

智慧社区信息化系统建设要点可以归纳为以下几个方面&#xff1a; 一、社区基础设施建设 网络设施&#xff1a;建设高速网、城域网、校内网等网络&#xff0c;以满足社区信息传输和管理所需。信息终端设备&#xff1a;建设各种类型的智能终端设备&#xff0c;包括智能手机、智能…

【GD32F303红枫派使用手册】第八节 TIMER-RGB彩灯实验

8.1 实验内容 通过本实验主要学习以下内容&#xff1a; RGB彩灯控制原理 TIMER PWM输出原理 8.2 实验原理 本例程中使用的RGB彩灯采用共阳极驱动方式&#xff0c;使用三路PWM进行驱动&#xff0c;对应引脚输出低电平的时候对应RGB灯珠点亮&#xff0c;调节不同路的PWM占空…

FPGA新起点V1开发板(八-语法篇)——状态机

文章目录 一、两个状态机模型二、状态机设计&#xff08;四段论&#xff09;2.1 状态空间定义2.2 状态跳转&#xff08;时序逻辑&#xff09;2.3 下个状态判断&#xff08;组合逻辑&#xff09;2.4 各个状态下的动作2.5 三段式 一、两个状态机模型 二、状态机设计&#xff08;四…

用户投诉对旅行社复购率有什么影响?该如何分析投诉数据?

随着在线旅游市场的不断扩大&#xff0c;旅游平台的用户基数和交易量持续增长&#xff0c;用户投诉作为服务质量的反馈机制&#xff0c;其重要性日益凸显。用户投诉不仅反映了旅游服务中存在的问题&#xff0c;也是推动平台中的旅行社改进服务、提升用户体验的重要动力。然而&a…

接口自动化-预期值和实际值怎么写?

测试类当中 怎么做接口自动化&#xff0c;返回值校验&#xff0c;就是需要返回值的预期值和实际值进行对比 实际值如下 怎么拿到预期值$.msg?用正则表达式-提取值 建新的类-来编写用正则表达式拿到预期值 源码pattern 使用的compile的方法&#xff0c;传入的是字符串正则表…

短剧cps系统搭建开发,热门短剧推广分销系统。短剧分销是怎么操作的?

目录 前言&#xff1a; 二、短剧是怎么推广分销的&#xff1f; 二、 短剧分销系统有什么功能&#xff1f; 三、怎么搭建&#xff1f; 总结&#xff1a; 前言&#xff1a; 短剧分销项目目前的现状是多元化且充满活力的。随着短剧市场的快速发展和观众接受度的提高&#xff0…

大功率LED照明芯片OC6781输入5V~36V,PWM升压型LED恒流驱动器

概述 OC6781是一款高效率、高精度的升压型LED恒流驱动控制芯片。OC6781内置高精度误差放大器&#xff0c;振荡器&#xff0c;恒流驱动电路等&#xff0c;特别适合大功率、多个高亮度LED灯串恒流驱动。OC6781采用固定频率的PWM控制方式&#xff0c;工作频率可通过外部电阻进行设…

MySQL的组成与三种log

MySQL由几块组成 连接器分析器优化器执行器 MySQL的三大log blog 作用&#xff1a; 用于主从同步与数据恢复 记录内容&#xff1a; 已经完成的 DML(数据操作语句)&#xff0c;主要是用于数据备份 redolog<重试日志> 作用&#xff1a; 崩溃恢复&#xff0c;用于事…

跟着AI学AI_02, 时域频域和MFCC

AI&#xff1a;ChatGPT4o 时域和频域是信号处理中的两个基本概念&#xff0c;用于描述信号的不同特性。 时域 时域&#xff08;Time Domain&#xff09; 是对信号随时间变化的描述。在时域中&#xff0c;信号是作为时间的函数来表示的。 时域表示&#xff1a;例如&#xff0…

双指针解题

验证回文数&#xff08;验证回文数-CSDN博客&#xff09;和判断在子序列&#xff08;判断子序列-CSDN博客&#xff09;已经在之前进行了计算&#xff0c;今天有三个新的双指针问题&#xff1a; 两数之和II—输入有序数组 给你一个下标从 1 开始的整数数组 numbers &#xff0…