SpringCloud学习路线(10)——分布式搜索ElasticSeach基础

一、初识ES

(一)概念:

ES是一款开源搜索引擎,结合数据可视化【Kibana】、数据抓取【Logstash、Beats】共同集成为ELK(Elastic Stack),ELK被广泛应用于日志数据分析和实时监控等领域,ES是核心组件。

(二)作用: 高效查询搜索内容。

(三)发展史:

1、底层实现是 Lucene,一个Java语言的搜索引擎类库,Apache公司的Top产品之一,由DoungCutting 于 1999 年开发,官方地址:https://lucene.apache.org/
Lucene的优势: 易扩展(可二次开发)、高性能(基于倒排索引)
Lucene的缺点: 只限于Java开发、学习曲线陡峭、不支持水平扩展

2、2004年Shay Banon 基于 Lucene 开发了 Compass

3、2010年Shay Banon 重写了 Compass,重命名为 Elasticsearch
官方地址: https://www.elastic.co/cn/
ES的优势:

  • 支持分布式,支持水平扩展
  • 提供RESTful接口,可被任何语言调用

(四)ES对比其它搜索引擎的优势

根据搜索引擎技术使用频率排名,前三名是

  • ES:开源的分布式搜索引擎(常用)
  • Splunk:商业项目
  • Solr:Apache的开源资源引擎(常用)

(五)正向索引和倒排索引

1、正向索引
传统数据库(例如MySQL)采用的是正向索引。

  • 匹配内容进行逐条查询
  • 若不匹配则丢弃,若匹配放入结果集

2、倒排索引

ES使用倒排索引。

  • 文档(document): 每条数据就是一个文档
  • 词条(term): 文档按照语义分成的词语

倒排索引首先会把索引应用的字段分出各个词条,并且存储在 term-id 键值对表中,若分出的词条相同,则只将当前数据行的id记录到索引表的id字段中。

倒排索引的匹配数据顺序:

  • 搜索内容分词
  • 获得的词条去词条列表查询id
  • 根据文档id查询文档
  • 数据存入结果集

(六)ES与MySQL的概念对比

  • ES是面向文档存储的,可以是数据库中的一条商品数据,一个订单信息。
  • 文档数据会被序列化为json格式后存储在elasticsearch中。

1、ES文档

{"id": 1,“title”: "小米手机","price": 2499
}
{"id": 2,“title”: "华为手机","price": 4699
}
{"id": 3,“title”: "华为小米充电器","price": 49
}
{"id": 4,“title”: "小米手环","price": 299
}

2、ES索引

索引(Index) 是相同类型的文档集合(看文档结构就知道类型是否相同)。

3、MySQL与ES的概念对比

  • Table:Index —— 索引,就是文档的集合,类似库的表(Table)
  • Row:Document —— 文档,就是数据行,类似数据库中的行(Row),文档是JSON格式
  • Column:Field —— Field,就是JSON文档中的属性,类似数据库中的列(Column)
  • Schema:Mapping —— Mapping(映射)是索引中的文档约束,例如字段类型约束。类似于数据库的表结构(Schema)
  • SQL:DSL —— DSL 是 ES 提供的JSON风格的请求语句,用来才做ES,实现CRUD

4、架构

MySQL架构:擅长事务类型操作,确保数据的安全和一致性。(主要是写操作)
ES 架构:擅长海量数据的搜索、分析、计算。(主要是读操作)

(七)安装ES和kibana

为什么要安装kibana? 因为kibana可以协助我们操作ES。

1、部署单点 ES

(1)创建网络

因为我们还需要部署 kibana 容器,因此需要让es和kibana容器互联,需要创建一个网络。

docker network create es-net

在这里插入图片描述
(2)加载镜像

docker pull elasticsearch:7.12.1

在这里插入图片描述
(3)运行ES

运行docker命令,部署单点es:

# -e "cluster.name=es-docker-cluster:设置集群名称
# -e "ES_JAVA_OPTS=-Xms512m -Xmx512m": 设置堆内存大小
# -e "discovery.type=single-node": 配置部署类型为单点
# -v es-data:/usr/share/elasticsearch/data: ES数据挂载点
# -v es-plugins:/usr/share/elasticsearch/plugins: ES插件挂载点
# --network es-net: 容器加载到网络
# -p 9200:9200: 暴露的HTTP访问接口 
# -p 9300:9300: 暴露容器访问端口docker run --name es \-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \-e "discovery.type=single-node" \-v es-data:/usr/share/elasticsearch/data \-v es-plugins:/usr/share/elasticsearch/plugins \--privileged \--network es-net \-p 9200:9200 \-p 9300:9300 \-d elasticsearch:7.12.1

在这里插入图片描述
访问9200端口

在这里插入图片描述

2、部署 kibana

docker pull kibana:7.12.1

在这里插入图片描述

# --network=es-net: 加入到ES的网络中
# -e ELASTICSEARCH_HOSTS=http://es:9200: 配置ES主机地址,因为在同一个网络中,所以可以直接用容器名访问ES
# -p 5601:5601: 端口映射配置
docker run --name kibana \-e ELASTICSEARCH_HOSTS=http://es:9200 \--network=es-net \-p 5601:5601 \-d kibana:7.12.1

在这里插入图片描述
访问Kibana控制台

在这里插入图片描述

DSL请求台

在这里插入图片描述

(八)分词器

ES在创建倒排索引时需要对文档分词;在搜索时,需要对用户输入内容分词,但默认的分词规则对中文处理并不好。

我们利用Kibana控制台做个中文测试:
在这里插入图片描述

中文分词器 IK

官网:https://github.com/medcl/elasticsearch-analysis-ik

1、部署 IK 分词器

在线安装可能会存在连接拒绝

#进入ES容器
docker exec -it es /bin/bash#下载 IK分词器
./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip#退出
exit#重启容器
docker restart elasticsearch

离线安装 ik

1、下载 ik.7.12.1,zip
2、解压之后,传输到 elasticsearch-plugins 数据卷
3、重启docker

docker restart es

4、查看IK分词器加载成功

docker logs -f es

在这里插入图片描述
5、测试

  • ik_smart: 粗粒度区分,只拆分一次的方式进行解析。
    在这里插入图片描述

  • ik_max_word: 最细粒度拆分,最大可能的分出更多的词

在这里插入图片描述


(九)IK分词器的扩展词条和停用词条

IK分词器的底层基于词典进行匹配,若匹配到词典那么就直接拆分,若没有匹配到则不做拆分。

所以我们需要对IK分词进行扩展

1、修改 IK分词器 的 /config/IKAnalyzer.cfg.xml 文件

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典 --><entry key="ext_dict">ext.dic</entry><!--用户可以在这里配置自己的扩展停止词字典--><entry key="ext_stopwords">stopword.dic</entry><!--用户可以在这里配置远程扩展字典 --><!-- <entry key="remote_ext_dict">words_location</entry> --><!--用户可以在这里配置远程扩展停止词字典--><!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>

2、创建 ext.dic 和 stopword.dic

这两个文件只是个文本文件,使用回车进行间隔,一个词一行。

这两个文件要配置在config目录下,不然读取不到,插件作者的词典也在config目录下。

3、重启docker

docker restart es

二、操作索引库

(一)mapping映射

常见的mapping属性

  • type: 字段数据类型,常见类型有
    • 字符串text(可分词的文本)、keyword(不可分词的文本)
    • 数值: byte、short、integer、long、float、double
    • 布尔: boolean
    • 日期: date
    • 对象: object
    • geo_point: 由经度和维度确认的点,例如"32.8138,120.58558"
    • geo_shape: 多个点复合的几何图形,例如一条直线LINESTRING(-77.06581831,-77.008463181)
  • index: 是否创建索引,默认为true
  • analyzer: 使用的分词器
  • properties: 该字段的子字段,例如对象中的属性
  • text: 分词文本

关于数组集合问题: mapping 支持单个类型能有多个。

(二)创建索引库

ES通过 RESTful 请求操作索引库、文档。请求内容用DSL语句来表示。

创建索引库和mapping 的DSL语法如下:

PUT /test
{"mappings": {"properties": {"info": {"type": "text""analyzer": "ik_smart},"email": {"type": "keyword","index": "false"},"name": {"type": "object","properties": {"firstName": {"type": "keyword"},"lastName": {"type": "keyword"}}}}}
}

常见成功效果

{"acknowledged" : true,"shards_acknowledged" : true,"index" : "test"
}

这里还有个小技巧: 当我们需要多字段搜索可以使用 copy_to进行属性拷贝。

"all": {"type": "text","analyzer: "ik_max_word"
},
"brand": {"type": "keyword","copy_to": "all"
}

(三)查看、删除、修改索引库

1、查看索引库

GET /test

使用效果

{"test" : {"aliases" : { },"mappings" : {"properties" : {"email" : {"type" : "keyword","index" : false},"info" : {"type" : "text","analyzer" : "ik_smart"},"name" : {"properties" : {"firstName" : {"type" : "keyword"},"lastName" : {"type" : "keyword"}}}}},"settings" : {"index" : {"routing" : {"allocation" : {"include" : {"_tier_preference" : "data_content"}}},"number_of_shards" : "1","provided_name" : "test","creation_date" : "1690214456747","number_of_replicas" : "1","uuid" : "IIdXK-pATYOns4c8BDoaMw","version" : {"created" : "7120199"}}}}
}

2、删除索引库

DELETE /test

使用效果

删除成功效果
{"acknowledged" : true
}再次查询索引库
{"error" : {"root_cause" : [{"type" : "index_not_found_exception","reason" : "no such index [test]","resource.type" : "index_or_alias","resource.id" : "test","index_uuid" : "_na_","index" : "test"}],"type" : "index_not_found_exception","reason" : "no such index [test]","resource.type" : "index_or_alias","resource.id" : "test","index_uuid" : "_na_","index" : "test"},"status" : 404
}

3、修改索引库(只能添加字段)

PUT /test/_mapping
{"properties": {"age": {"type": "integer}}
}

使用效果

新增成功
{"acknowledged" : true
}
再次查询/test索引库
{"test" : {"aliases" : { },"mappings" : {"properties" : {"age" : {"type" : "integer"},"email" : {"type" : "keyword","index" : false},"info" : {"type" : "text","analyzer" : "ik_smart"},"name" : {"properties" : {"firstName" : {"type" : "keyword"},"lastName" : {"type" : "keyword"}}}}},"settings" : {"index" : {"routing" : {"allocation" : {"include" : {"_tier_preference" : "data_content"}}},"number_of_shards" : "1","provided_name" : "test","creation_date" : "1690214957185","number_of_replicas" : "1","uuid" : "HeoHP6GYS-uovI1DQyxEsg","version" : {"created" : "7120199"}}}}
}

三、文档操作

(一)新增文档

POST /test/_doc/1
{"info": "Java是最好的语言","age": 18,"email": :"zengoo@163.com","name": {"firstName": "Zengoo","lastName": "En"}
}

使用效果

{"_index" : "test","_type" : "_doc","_id" : "1","_version" : 1,"result" : "created","_shards" : {"total" : 2,"successful" : 1,"failed" : 0},"_seq_no" : 0,"_primary_term" : 1
}

(二)删除文档

DELETE /test/_doc/1

使用效果

删除成功
{"_index" : "test","_type" : "_doc","_id" : "1","_version" : 2,"result" : "deleted","_shards" : {"total" : 2,"successful" : 1,"failed" : 0},"_seq_no" : 1,"_primary_term" : 1
}再次查询
{"_index" : "test","_type" : "_doc","_id" : "1","found" : false
}

(三)修改文档

PUT /test/_doc/1
{"info": "这是我的ES拆分Demo"
}

使用效果

修改成功
{"_index" : "test","_type" : "_doc","_id" : "1","_version" : 2,"result" : "updated","_shards" : {"total" : 2,"successful" : 1,"failed" : 0},"_seq_no" : 3,"_primary_term" : 1
}再次查询
{"_index" : "test","_type" : "_doc","_id" : "1","_version" : 2,"_seq_no" : 3,"_primary_term" : 1,"found" : true,"_source" : {"info" : "这是我的ES拆分Demo"}
}

我们可以看到直接使用PUT进行修改,会直接覆盖原有的文档。

所以我们使用第二种修改方法。

POST /test/_update/1
{"doc": {"info": "这是我的ES拆分Demo"}
}

使用效果

更新成功
{"_index" : "test","_type" : "_doc","_id" : "1","_version" : 11,"result" : "updated","_shards" : {"total" : 2,"successful" : 1,"failed" : 0},"_seq_no" : 12,"_primary_term" : 1
}查询文档
{"_index" : "test","_type" : "_doc","_id" : "1","_version" : 11,"_seq_no" : 12,"_primary_term" : 1,"found" : true,"_source" : {"info" : "这是我的ES拆分Demo","age" : 18,"email" : "zengoo@163.com","name" : {"firstName" : "Zengoo","lastName" : "En"}}
}

(四)查询文档

GET /test/_doc/1

使用效果

{"_index" : "test","_type" : "_doc","_id" : "1","_version" : 1,"_seq_no" : 0,"_primary_term" : 1,"found" : true,"_source" : {"info" : "Java是最好的语言","age" : 18,"email" : "zengoo@163.com","name" : {"firstName" : "Zengoo","lastName" : "En"}}
}

四、RestClient操作索引库

(一)RestClient

ES官方提供了不同语言的ES客户端,这些客户端的本质是组装DSL语句,通过HTTP请求发送给ES。
官方文档: https://www.elastic.co/guide/en/elasticsearch/client/index.html

(二)安装RestClient

安装RestHighLevelClient依赖

<dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-hight-level-client</artifatId>
</dependency>

覆盖默认的ES版本

<properties><elasticsearch.version>7.12.1</elasticsearch.version>
</properties>

初始化RestHighLevelClient

RestHightLevelClient client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.92.131:9200")));

(三)RestClient操作索引库

创建索引库

//1、创建Request对象
CreateIndexRequest request = new CreateIndexRequest("test");
//2、请求参数,
//MAPPING_TEMPLATE 是静态常量字符串,描述的是自定义的创建索引库的DSL语句
//XContentType.JSON 是指定DSL语句以JSON格式化
request.source(MAPPING_TEMPLATE, XContentType.JSON);
//3、发起请求
//indices, 返回对象中包含的所有索引库操作方法
//RequestOptions.DEFAULT, 默认请求头
client.indices().create(request, RequestOptions.DEFAULT);

删除索引库

CreateIndexRequest request = new CreateIndexRequest("test");
client.indices().delete(request, RequestOptions.DEFAULT);

查询索引库存在状态

CreateIndexRequest request = new CreateIndexRequest("test");
boolean status = client.indices().exists(request, RequestOptions.DEFAULT);

(四)RestClient操作数据文档

创建文档

//根据ID查询数据, hotelService的自定义的方法getById
Hotel hotel = hotelService.getById(1L);
//转换类型,由于数据库类型与DSL类型有差异,所以需要定义一个转换类进行属性转换,即转换类构造器改造实体类。
HotelDoc hotelDoc = new HotelDoc(hotel);
//1、创建Request对象
IndexRequest request = new IndexRequest("test").id(hotel.getId().toString());
//2、准备JSON文档, 通过fastjson快速转换成json格式文本
request.source(JSON.toJSONString(hotelDoc, XContentType.JSON);
//3、发送请求
//index, 就是发送请求的那个索引
client.index(request, RequestOptions.DEFAULT);

查询文档

//1、创建request对象
GetRequest request = new GetRequest("test").id("1");
//2、发送请求,得到结果
GetResponse response = client.get(request, RequestOptions.DEFAULT);
//3、解析结果
String json = response.getSourceAsString();
System.out.println(JSON.parseObject(json, HotelDoc.class));

删除文档

//1、创建request对象
DeleteRequest request = new DeleteRequest("test").id("1");
//2、发送请求,得到结果
client.delete(request, RequestOptions.DEFAULT);

修改文档

方式一:全量修改

方式二:局部修改

//1、创建Request对象
UpdateRequest request = new UpdateRequest("test","1");
//2、准备参数,每两个参数为一对
request.doc("age": 18,"name": "Rose"
);
//3、更新文档
client.update(request, RequestOptions.DEFAULT);

批量导入文档

使用思路

1、通过mybatis查询数据库数据
2、实体类数据转换成文档类型数据
3、RestClient利用Bulk批处理

//1、创建Bulk请求
BulkRequest request = new BulkRequest();//2、添加批量处理请求
for(Hotel hotel: hotels){HotelDoc hotelDoc = new HotelDoc(hotel);request.add(new IndexRequest("hotel").id(hotel.getId().toString()).source(JSON.tJSONString(hotelDoc),XContentType.JSON));
}//3、发起请求
client.bulk(request, RequestOptions.DEFAULT);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/8467.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LangChain】检索器之上下文压缩

LangChain学习文档 【LangChain】检索器(Retrievers)【LangChain】检索器之MultiQueryRetriever【LangChain】检索器之上下文压缩 上下文压缩 LangChain学习文档 概要内容使用普通向量存储检索器使用 LLMChainExtractor 添加上下文压缩(Adding contextual compression with an…

AI视频监控综合管理平台EasyCVR多分屏默认播放协议的配置优化

智能视频监控平台EasyCVR可拓展性强、开放度高&#xff0c;既能作为业务平台使用&#xff0c;也能作为视频能力层被调用和集成。视频监控综合管理平台兼容度高&#xff0c;支持自由调用、支持与第三方集成。在AI能力的接入上&#xff0c;TSINGSEE青犀视频平台可支持AI智能分析网…

奇舞周刊第500期:TQL,巧用 CSS 实现动态线条 Loading 动画

记得点击文章末尾的“ 阅读原文 ”查看哟~ 下面先一起看下本期周刊 摘要 吧~ 奇舞推荐 ■ ■ ■ TQL&#xff0c;巧用 CSS 实现动态线条 Loading 动画 最近&#xff0c;群里有个很有意思的问题&#xff0c;使用 CSS 如何实现如下 Loading 效果&#xff1a; leaferjs&#xff0c…

STM32MP157驱动开发——LED 驱动( GPIO 子系统)

文章目录 编写思路GPIO子系统的LED驱动程序(stm32mp157)如何找到引脚功能和配置信息在设备树中添加 Pinctrl 信息leddrv.cledtest.cMakefile编译测试 编写思路 阅读&#xff1a;STM32MP157驱动开发——GPIO 和 和 Pinctrl 子系统的概念可知利用GPIO子系统去编写LED驱动&#x…

机器学习深度学习——softmax回归从零开始实现

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——向量求导问题 &#x1f4da;订阅专栏&#xff1a;机器学习&&深度学习 希望文章对你们有所帮助 …

全网最牛,Jmeter接口自动化-读取用例执行并结果回写(详细整理)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、环境准备 下载…

网络安全(零基础)自学

一、网络安全基础知识 1.计算机基础知识 了解了计算机的硬件、软件、操作系统和网络结构等基础知识&#xff0c;可以帮助您更好地理解网络安全的概念和技术。 2.网络基础知识 了解了网络的结构、协议、服务和安全问题&#xff0c;可以帮助您更好地解决网络安全的原理和技术…

windows下安装composer

安装Php 教程 下载composer 官网 中文网站 exe下载地址 下载好exe 双击运行 找到php.ini注释一行代码 测试 composer -v说明安装成功 修改源 执行以下命令即可修改 composer config -g repo.packagist composer https://packagist.phpcomposer.com # 查看配置…

SAFe工具,SAFe规模化敏捷工具,SAFe实施流程,SAFe框架管理工具

​Leangoo领歌敏捷工具覆盖了敏捷项目研发全流程&#xff0c;包括小型团队敏捷开发&#xff0c;Scrum of Scrums大规模敏捷。 随着SAFe的越来越普及&#xff0c;Leangoo本次上线提供了完整的SAFe框架功能&#xff0c;包括&#xff1a;Program Backlog&#xff0c;PI规划&#…

从零开始学习自动驾驶路径规划-环境配置

从零开始学习自动驾驶路径规划-环境配置 前面&#xff0c;每个人遇到的问题不一样&#xff0c;这里记录了配置步骤和目前遇到的问题&#xff0c;会持续更新报错解决方法。配置时有报错请认真看报错经验 环境配置步骤&#xff08;18.04和20.04都可以&#xff0c;有些问题没遇到…

医疗小程序:提升服务质量与效率的智能平台

在医疗行业&#xff0c;公司小程序成为提高服务质量、优化管理流程的重要工具。通过医疗小程序&#xff0c;可以方便医疗机构进行信息传播、企业展示等作用&#xff0c;医疗机构也可以医疗小程序提供更便捷的预约服务&#xff0c;优化患者体验。 医疗小程序的好处 提升服务质量…

C# List 详解六

目录 35.MemberwiseClone() 36.Remove(T) 37.RemoveAll(Predicate) 38.RemoveAt(Int32) 39.RemoveRange(Int32, Int32) 40.Reverse() 41.Reverse(Int32, Int32) C# List 详解一 1.Add(T)&#xff0c;2.AddRange(IEnumerable)&#xff0c;3…

css——box-sizing属性

含义 盒子模型由四部分构成&#xff0c;外边距(margin), 边框(border),内边距(padding), 内容content box-sizing 就是指定盒子的大小和结构的。 box-sizing: content-box; //默认值 内容真正宽度 设置的宽度box-sizing: border-box; // 内容真正宽度width 设置的width- 左右p…

ChatGPT应用|科大讯飞星火杯认知大模型场景创新赛开始报名了!

ChatGPT发布带来的 AI 浪潮在全球疯狂蔓延&#xff0c;国内掀起的大模型混战已经持续半年之久&#xff0c;国产大模型数量正以惊人的速度增长&#xff0c;据不完全统计&#xff0c;截止7月14号已经达到了111个&#xff0c;所谓的“神仙打架”不过如此了吧。 &#xff08; 包括但…

【Hammerstein模型的级联】快速估计构成一连串哈默斯坦模型的结构元素研究(Matlab代码实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f308;4 Matlab代码实现 &#x1f4a5;1 概述 在许多振动应用中&#xff0c;所研究的系统略微非线性。Hammerstein模型的级联可以方便地描述这样的系统。Hammerstein提供了一种基于指数正弦…

Windows Server 2012 搭建网关服务器并端口转发

需求 使用 Windows server 作为Hyper-V 虚拟出许多虚拟机&#xff0c;基本上都分配了内网地址&#xff0c;现在需要这些虚拟机访问外网&#xff0c;或者外网直接访问这些虚拟机&#xff0c;必须配置一个网关服务器。我决定直接使用 Windows 的远程访问中的 NAT 服务来完成。 …

PHP注册、登陆、6套主页-带Thinkphp目录解析-【强撸项目】

强撸项目系列总目录在000集 PHP要怎么学–【思维导图知识范围】 文章目录 本系列校训本项目使用技术 上效果图主页注册&#xff0c;登陆 phpStudy 设置导数据库项目目录如图&#xff1a;代码部分&#xff1a;控制器前台的首页 其它配套页面展示直接给第二套方案的页面吧第三套…

Android版本的发展4-13

Android 4.4 KitKat 1、通过主机卡模拟实现新的 NFC 功能。 2、低功耗传感器&#xff0c;传感器批处理&#xff0c;步测器和计步器。 3、全屏沉浸模式&#xff0c;隐藏所有系统 UI&#xff0c;例如状态栏和导航栏。它适用于鲜艳的视觉内容&#xff0c;例如照片、视频、地图、…

API自动化测试总结

目录 Jmeter是怎么做API自动化测试的&#xff1f; Jmeter中动态参数的处理&#xff1f; 怎么判断前端问题还是后端问题&#xff1f; 详细描述下使用postman是怎么做API的测试的&#xff1f; 资料获取方法 Jmeter是怎么做API自动化测试的&#xff1f; 1、首先在JMeter里面…

Spring AOP(面向切面编程)的详细讲解

1.什么是 AOP&#xff1f; AOP&#xff08;Aspect Oriented Programming&#xff09;&#xff1a;⾯向切⾯编程&#xff0c;它是⼀种思想&#xff0c;它是对某⼀类事情的集中处理 AOP是一种思想&#xff0c;而Spring AOP是一个实现了AOP的思想框架&#xff0c;他们的关系和IOC…