数学建模之MATLAB入门教程(上)

前言:

• MATLAB是美国Math  Works公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。
• MATLAB将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案。

• MATLAB作为线性系统的一种分析和仿真工具,是理工科大学生应该掌握的技术工具,它作为一种编程语言和可视化工具,可解决工程、科学计算和数学学科中许多问题.
• MATLAB建立在向量、数组和矩阵的基础上,使用方便,人机界面直观,输出结果可视化.
• 矩阵是MATLAB的核心(Matrix Laboratory)

 一、变量与函数

1、变量

MATLAB的命名规则:

(1)变量名必须是不含空格的单个词;
(2)变量名区分大小写;
(3)变量名最多不超过63个字符(6.5之前19个)
(4)变量名必须以字母打头,之后可以是任意字母、数字或下划线,变量名中不允许使用标点符号。

特殊变量取值
ans用于计算结果缺少变量名
pi圆周率
eps计算机的最小数,和1相加时产生一个比1大的数
flops浮点运算数
inf无穷大,比如1/0
NaN不定量,比如0/0
i,j虚数单位
nargin所用函数的输入变量数目
nargout所用函数的输出变量数目
realmin最小可用正实数
realmax最大可用正实数

注意:尽量避免给系统预定义的变量重新赋值! 

变量的查询:

•        显示工作空间中的所有变量    ----who

•        查看工作空间中变量的详细属性   ---whos

 2、数学运算符号及标点符号

+加法运算,适用于两个数或两个同阶矩阵相加
-减法运算
*乘法运算
.*点乘运算
/除法运算
./点除运算
^乘幂运算
.^点乘幂运算
\反斜杠表示左除

(1)MATLAB的每条命令后,若为逗号或无标点符号,则显示命令结果;若命令后为分号,则不显示结果。

(2)“%”后面的文字为注释。

(3)“...”表示续行。

3、数学函数 

函数名称函数名称
sin(x)正弦函数asin(x)反正弦函数
cos(x)余弦函数acos(x)反余弦函数
tan(x)正切函数atan(x)反正切函数
abs(x)绝对值max(x)最大值
min(x)最小值sum(x)元素的总和
sqrt(x)开平方exp(x)以e为底的指数
log(x)自然对数$log_{10}(x)$以10为底的对数
sign(x)符号函数fix(x)取整

4、M文件 

 MATLAB的内部函数是有限的,有时为了研究某个函数的各种形态,需要为MATLAB定义新函数,为此必须编写函数文件。函数文件的后缀名为M的文件,这类文件的第一行必须是以特殊字符function开始,格式为:

function  因变量名=函数名(自变量名)

函数值的获得必须通过具体的运算实现,并赋给因变量。 

M文件建立方法:1.在MATLAB中,点:File->New->M-file

                            2.在编辑窗口输入程序内容

                            3.点File->Save,存盘,M文件必须与函数名一致 

function f=fun(x)
f=100*(x(2)-x(1)^2)^2+(1-x(1))^2

 

二、数组

1、创建简单的数组

x=[a b c d e f]创建包含指定元素的行向量.

x=first:last

创建从first开始,加1计数,到last结束的行向量。

x=first:increment:last

创建从first开始,到increment计数,到last结束的行向量

x=linspace(first,last,n)

创建从first开始,到last结束,有n个元素的行向量

x=logspace(first,last,n)

创建从first开始,到last结束,有n个元素的对数分割行向量

2、数组元素的访问

(1)访问一个元素:x(i)表示访问数组x的第i个元素。

(2)访问一块元素:x(a:b:c)表示访问数组x的第a个元素开始,以步长b到第c个元素(但不超过c),b可以为负数,b缺省时为1.

(3)直接使用元素编址序号。x([a  b  c  d])表示提取数组x的第a、b、c、d个元素构成一个新的数组[x(a)  x(b)  x(c) x(d)].

3、数组的方向

前面的例子中的数组都是一行数列,时行向量分布的。称之为行向量。数组也可使列向量,它的数组操作和运算与行向量是一样的,唯一的区别是结果以列的形式显示。产生方法:

直接产生        例如        c=[1; 2; 3; 4]

转置产生        例如        b=[1  2  3  4];c=b'

说明:以空格或逗号分隔的元素指定的是不同列的元素,而以分号分隔的元素指定了不同行的元素。 

4、数组的运算 

(1)标量-数组运算

数组对标量的加、减、乘、除和平方运算,是指数组的每个元素对该标量施加相应的加、减、乘、除、平方运算。设:a=[$a_1$,$a_2$,...,$a_n$]

则:a+c=[ $a_1$+c,$a_2$+c,...,$a_n$+c]

       a.*c=[$a_1$*c,$a_2$*c,...,$a_n$*c]

       a.\c=[c/$a_1$,c/$a_2$,...,c/$a_n$](左除)

       a.^c=[$a_1$^c,$a_2$^c,...,$a_n$^c]

(2)数组-数组运算

当两个数组有相同为维数时,加、减、乘、除、幂运算可按元素对元素方式进行,不同大小或位数的数组是不能进行和运算的。

三、矩阵

1、矩阵的建立

矩阵用方括号“[ ]”括起来。逗号或空格用于分隔某一行的元素,分号用于区分不同的行。除了分号,在输入矩阵时,按Enter键也表示开始新一行。输入矩阵时,严格要求所有行有相同的列

例如:m=[1 2 3 4; 5 6 7 8; 9 10 11 12]

特殊矩阵的建立:

c=ones(m,n)        产生一个m行n列的元素全为1的矩阵

b=zeros(m,n)        产生一个m行n列的零矩阵

a=[  ]        产生一个空矩阵,当对一项操作无结果时,返回空矩阵,空矩阵的大小为零

d=eye(m,n)        产生一个m行n列的单位矩阵

2、矩阵中元素的操作 

(1)矩阵的第r行:A(r,:)

(2)矩阵的第r列:A(:,r)

(3)依次提取矩阵A的每一列,将A拉伸为一个列向量:A(:)

(4)取矩阵A的第i1~i2行、第j1~j2列构成新矩阵:A(i1:i2,j1:j2)

(5)以逆序提取矩阵A的第i1~i2行,构成新矩阵:A(i2:-1:i1,:) 

(6)删除A的第i1~i2行,构成新矩阵:A(i1:i2,:)=[  ] 

(7)将矩阵A和B拼接成新矩阵:[A  B]; [A;  B] 

3、矩阵的运算 

(1)标量-矩阵运算

标量-数组运算相同

(2)矩阵-矩阵运算

[1]元素对元素的运算,同数组-数组运算

[2]矩阵运算

方阵的行列式:det(A)

方阵的逆:inv(A)

方阵的特征值与特征向量:[V, D]=eig[A]

a=[1 2 3;4 5 6];
b=[1 2;1 2;1 2];
c1=a+a
c2=a*b
c=[2 7 3;3 9 4;1 5 3];
c3=det(c)
c4=inv(c)
[v,d]=eig(c)

符号计算之求极限

syms x
y1=(1+4*x)^(1/x);
y2=(exp(x)-1)/x;
limit(y1,x,0)
limit(y2,x,0)

求导数与偏导数

比如:3x^3+5x+1

syms x
f=2*x^3+5*x+1
diff(f,1)

求定积分与多重积分,比如:

syms x y
int(int(x^2+y^2+1,y,x,x+1),x,0,1)

常微分方程初值问题的数值解法

1、龙格-库塔法简介

2、龙格-库塔法的实现

基于龙格-库塔法,MATLAB提供了求常微分方程数值解的函数,一般调用格式为:

[t,y]=ode23('fname',tspan,y0)

[t,y]=ode45('fname',tspan,y0)

其中fname是定义f(t,y)的函数文件名,该函数文件必须返回一个列向量。tspan形式为[t0,tf],表示求解区间。y0是初始状态列向量。t和y分别给出时间向量和相应的状态向量。 

function yp=fun(t,y)
yp=(y^2-t-2)/4/(t+1);
t0=0;tf=10;
y0=2;
[t,y]=ode23('fun',[t0,tf],y0);
y1=sqrt(t+1)+1;
t'
y'
y1'

控制流

MATLAB提供三种决策或控制流决策:for循环、while循环、if-else-end结果

这些结构包含大量的MATLAB命令,故经常出现在MATLAB程序中,而不是直接加在MATLAB提示符下。

for循环:允许一组命令以固定的和预定次数重复

for        x=array

        {commands}

end 

在for和end语句之间的命令串{commands}按数组(array)中的每一列执行一次。在每一次迭代中,x被指定为数组的下一列,即在第n次循环中,x=array(:,n)

for n=1:10x(n)=sin(n*pi/10);
end
x

 while循环:与for循环以固定次数求一组命令相反,while循环以不定的次数求一组语句的值

 while        (expression)

                        {commands}

                end

例        设银行年利率为11.25%。将10000元存入银行,问多长时间会连本带利的翻一翻?

money=10000
years=0
while money<20000years=years+1money=money*(1+11.25/100)
end

 if-else-end结构:

if        (expression)

                        {commands}

                end

四、MATLAB作图 

 1、曲线图

 MATLAB作图是通过描点、连线来实现的,故在画一个曲线图形之前,必须先取得该图形上的一系列的点的坐标(即横坐标与纵坐标),然后将该点集的坐标传给MATLAB函数画图。

命令为:

plot(X,Y,S)

X,Y是向量,分别表示该点集的横坐标和纵坐标

.y        黄色        .        点        -        连线

.m        洋红        o        圈        :        短虚线

.c        蓝绿色        x  x-符号

-.        长短线        r        红色

+        加号        --        长虚线

plot(X,Y)——画实线

例如        在[0,2pi]用红线画sinx,绿圈画cosx

 2、符号函数(显函数、隐函数和参数方程)画图

(1)ezplot(‘f(x)’,[a,b])表示在a<x<b绘制显函数f=f(x)的函数图

ezplot('f(x,y)',[xmin,xmax,ymin,ymax])表示在区间xmin<x<xmax和ymin<y<ymax绘制隐函数f(x,y)=0的函数图

ezplot('x(t)','y(t)',[tmin,tmax])表示在区间tmin<t<tmax绘制参数方程x=x(t),y=y(t)的函数图

例        在[0,2pi]上画x=cos^3t,y=sin^3t星形图

 例        在[-2,0.5],[0,2]上画隐函数e^x+sin(xy)=0的图

 (2)fplot('fun',lims),fplot(@(x)fun,lims)

表示绘制字符串fun指定的函数在lims[xmin,xmax]的图形

注意:

[1]        fun必须是M文件的函数名或独立变量为x的字符串。

[2]        fplot函数不能换参数方程和音函数图形,但在一个图上可以花多个图形。

2、空间曲线

plot3(x,y,z,s) 

例        在区间[0,10pi]画出参数曲线 x=sint,y=cost,z=t

 3、空间曲面

(1)surf(x,y,z)画出数据点(x,y,z)表示的曲面

例        画出z=(x+y)^2的图形

4、处理图形 

例        在区间[0,2*pi]画出sin(x)的图形,并家住图例“自变量X”“函数Y”、“示意图”,并加格栅 

gtext('string')

例        在区间[0,2*pi]画sin(x),并标注"sinx","cos(x)"

 图形保持

(1)hold on        保持当前图形,一边继续画图到当前图上

         hold off       释放当前图形窗口

例        将y=sin(x),y=cos(x)分别用电荷线画在同一个屏幕上

(2)割窗口 

例        将屏幕分为四块,并画出y=sin(x),z=cos(x),a=sin(x)*cos(x),b=sin(x)/cos(x) 

 由于内容过多,剩下的我们后面再赘述!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/846687.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python自动化识别与删除Excel表格空白行和列

在处理Excel数据时&#xff0c;经常会遇到含有空白行和空白列的情况。这些空白区域不仅占用表格显示空间&#xff0c;还可能导致数据分析时出现偏差&#xff0c;影响数据处理的效率与结果的准确性&#xff0c;如空白行可能干扰数据聚合操作&#xff0c;导致统计计数不准确&…

集合类源码浅析のArrayList

源码分析路线图&#xff1a; 初级部分&#xff1a;ArrayList->LinkedList->Vector->HashMap(红黑树数据结构&#xff0c;如何翻转&#xff0c;变色&#xff0c;手写红黑树)->ConcurrentHashMap 中级部分&#xff1a;Spring->Spring MVC->Spring Boot->M…

240602-通过命令行实现HuggingFace文件上传

A. 登录显示 A.1 MacOS A.2 Windows B. 操作步骤 B.1 操作细节 要通过命令行将文件上传到 Hugging Face&#xff0c;可以使用 huggingface-cli 工具。以下是详细步骤&#xff1a; 安装 huggingface_hub 包&#xff1a; 首先&#xff0c;确保已经安装了 huggingface_hub 包。可…

基于springboot实现青年公寓服务平台系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现青年公寓服务平台系统演示 摘要 传统信息的管理大部分依赖于管理人员的手工登记与管理&#xff0c;然而&#xff0c;随着近些年信息技术的迅猛发展&#xff0c;让许多比较老套的信息管理模式进行了更新迭代&#xff0c;房屋信息因为其管理内容繁杂&#xff…

“人工智能AI+” 应用场景盘点

在这个科技与梦想交相辉映的时代&#xff0c;人工智能已不再停留于遥不可及的概念构想&#xff0c;而是化身为一股汹涌的创新洪流&#xff0c;深刻塑造着社会的每一个角落。从文化艺术的智慧火花到生命科学的精密探索&#xff0c;从工业制造的革新升级到日常生活的细致入微&…

Delphi使用TMS.MQTT开发Mqtt客户端

服务端用的是 mosquitto ,下载地址Download | Eclipse Mosquitto 安装完成后需要配置 找到安装目录:mosquitto.conf,打开后修改 allow_anonymous false(禁止匿名登录),password_file D:\Program Files\mosquitto\pwfile.example(密码存放位置) 创建新用户,安装目录…

Least-Squares Rigid Motion Using SVD——文献精读(使用 SVD 方法求解 ICP 问题)

一、文章信息与摘要 文章标题&#xff1a;Least-Squares Rigid Motion Using SVD&#xff08;使用奇异值分解的最小二乘刚性运动&#xff09; 说明本文的核心目标&#xff1a;计算对齐两组对应点的最佳拟合刚性变换的步骤 二、问题描述 假设P{p1,p2,...,pn}和Q{q1,q2,...,qn…

Feature Manipulation for DDPM based Change Detection

基于去噪扩散模型的特征操作变化检测 文章提出了一种基于去噪扩散概率模型&#xff08;DDPM&#xff09;的特征操作变化检测方法。变化检测是计算机视觉中的经典任务&#xff0c;涉及分析不同时间捕获的图像对&#xff0c;以识别场景中的重要变化。现有基于扩散模型的方法主要…

C++ 习题精选(2)

目录 1. 验证回文串2. 字符串相乘 1. 验证回文串 题目描述&#xff1a;如果在将所有大写字符转换为小写字符、并移除所有非字母数字字符之后&#xff0c;短语正着读和反着读都一样。则可以认为该短语是一个 回文串 。字母和数字都属于字母数字字符。给你一个字符串 s&#xff…

Vue01-vue的简介

一、Vue是什么&#xff1f; 一套用于构建用户界面的渐进式javaScript框架。 构建用户界面&#xff1a; 渐进式&#xff1a; 目前Vue的地位&#xff1a;生态完善&#xff0c;国内前端工程师必备技能。 二、Vue的特点 一个XXX.vue就是一个组件&#xff0c;封装的概念&#xff0c…

threejs的三维前端项目用THREEPlaneGeometry创建平面几何体对象的方法

在 Three.js 中&#xff0c;可以使用THREE.PlaneGeometry类来创建平面几何体对象。THREE.PlaneGeometry类用于创建一个具有指定宽度和高度的平面几何体。 艾斯视觉作为行业ui设计与前端开发服务商很高兴能在这里与你共同探讨&#xff1a;以下是一个示例代码&#xff0c;展示了如…

文心一言 VS 讯飞星火 VS chatgpt (272)-- 算法导论20.2 7题

七、试说明如果 PROTO-vEB-MINIMUM 中的第 9 行被执行&#xff0c;则proto-vEB 结构为空。如果要写代码&#xff0c;请用go语言。 文心一言&#xff1a; 在 PROTO-vEB-MINIMUM 算法中&#xff0c;我们假设你指的是一个基于位向量&#xff08;bit-vector&#xff09;的扩展二进…

OSG学习记录

学习自OpenSceneGraph Quick Start Guide的中文版&#xff0c;建议学习书&#xff08;比较全面&#xff09; OSG的内存管理机制 程序保存一个指向根节点的指针&#xff0c;不保存场景图形中其他节点的指针。根节点将直接或间接地“引用”场景图形中的所有的节点。 当应用程序…

回溯算法 -- 77. 组合

目录 一.题目描述 二.解题思路 三.回溯三部曲 3.1确定递归函数的返回值以及参数 3.2回溯算法的终止条件 3.3确定单层循环搜索逻辑 四.具体的代码 一.题目描述 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案…

【Linux】进程间通信(System V IPC)

这节我们开始学习System V IPC方案。 分别是共享内存&#xff0c;消息队列与信号量 会着重讲解共享内存&#xff0c;但是消息队列与信号量只会说明一下原理。 原因&#xff1a;System V是新设计的一套标准 与文件的整合度不高只能进行本地通信 更何况&#xff0c;我们现在有…

若依开发-数据库修改密码

若依忘记密码 在SecurityUtils类添加 public static void main(String[] args) {System.out.println(SecurityUtils.encryptPassword("admin123"));}即可打印出加密后密码

探索安全之道 | 企业漏洞管理:从理念到行动

如今&#xff0c;网络安全已经成为了企业管理中不可或缺的一部分&#xff0c;而漏洞管理则是网络安全的重中之重。那么企业应该如何做好漏洞管理呢&#xff1f;不妨从业界标准到企业实践来一探究竟&#xff01;通过对业界标准的深入了解&#xff0c;企业可以建立起完善的漏洞管…

谷歌发布文生视频模型——Veo,可生成超过一分钟高质量1080p视频

前期我们介绍过OpenAI的文生视频大模型-Sora 模型&#xff0c;其模型一经发布&#xff0c;便得到了大家疯狂的追捧。而Google最近也发布了自己的文生视频大模型Veo&#xff0c;势必要与OpenAI进行一个正面交锋。 Veo 是Google迄今为止最强大的视频生成模型。它可以生成超过一分…

JVM虚拟机性能监控工具

命令行工具 jps 虚拟机进程状况查询工具 jps(JVM Process Status Tool)&#xff0c;可以列出正在运行的虚拟机进程&#xff0c;并显示虚拟机执行主类名称或者jar文件名&#xff0c;还有这些进程的本地虚拟机唯一ID(LVMID&#xff0c;Local Virtual Machine Identifier)。 # …

网页安全登陆的设计思路

对于Web网站来讲,不管是企业内容信息化系统,还是公共站点(博客、音视频站等),都有需要用户注册和登录的功能。用以识别用户、信息交互、信息隔离以及商业行为等场景。用户数据已成为网站的重要资产。保护用户信息(数据)是网站安全运行的关键任务。本文以用户安全登录的场…