Linux 驱动设备匹配过程

一、Linux 驱动-总线-设备模型

1、驱动分层        

        Linux内核需要兼容多个平台,不同平台的寄存器设计不同导致操作方法不同,故内核提出分层思想,抽象出与硬件无关的软件层作为核心层来管理下层驱动,各厂商根据自己的硬件编写驱动代码作为硬件驱动层

2、设备&总线&驱动

        Linux内核建立的 设备-总线-驱动 模型,定义如下:

1、device
include\linux\device.h
struct device {...struct bus_type	*bus;		  /* type of bus device is on */struct device_driver *driver; /* which driver has allocated this device */struct device_node	*of_node; /* associated device tree node */...
}2、driver
include\linux\device\driver.h
struct device_driver {...struct bus_type		*bus;...
}3、bus
include\linux\bus\bus.h
struct bus_type {...int (*match)(struct device *dev, struct device_driver *drv);int (*probe)(struct device *dev);...
}

        这里提到的是虚拟总线,总线能将对应的设备和驱动进行匹配,可以用下面的命令查看不同总线类型

/sys/bus # ls -l 
......
drwxr-xr-x 4 root root 0 2023-02-21 13:35 i2c
drwxr-xr-x 4 root root 0 2023-02-21 13:35 mmc
drwxr-xr-x 5 root root 0 2023-02-21 13:35 pci
drwxr-xr-x 4 root root 0 2023-02-20 07:09 platform
drwxr-xr-x 4 root root 0 2023-02-21 13:35 scsi
drwxr-xr-x 4 root root 0 2023-02-21 13:35 usb
......
总线类型描述
I2C总线挂在i2c总线(硬件)下的从设备,比如加密芯片、rtc芯片、触摸屏芯片等等都需要驱动,自然也要按照分离思想来设计。内核中的i2c 总线就是用来帮助i2c从设备的设备信息和驱动互相匹配的
Platform总线

像i2c、spi这样硬件有实体总线的,从设备驱动可以用总线来管理。那么没有总线的硬件外设怎么办?比如gpio、uart、i2c控制器、spi 控制器…等等,这些通通用 platform 总线来管理

二、驱动匹配设备过程简述

        在写驱动时会用到一些注册函数比如:platform_driver_register,spi_register_driver、i2c_add_driver,接下来分析内核驱动和设备匹配的流程,原理就是在注册到总线的时候,去获取对方的链表并根据规则检测,匹配后调用probe(),也就是驱动的入口函数

        以Platform Driver举例,整个匹配过程如下

2.1 整体调用逻辑

module_platform_driver|-- module_driver|-- __platform_driver_register|-- driver_register|-- bus_add_driver|-- driver_attach|-- bus_for_each_dev|-- __driver_attach|-- driver_match_device|-- platform_match|-- of_driver_match_device|-- of_match_device|-- __of_match_node|-- driver_probe_device|-- really_probe|-- call_driver_probe|-- platform_probe|-- drv->probe()

2.2 module_platform_driver

        封装了一层,展开后实际上就是module_init和module_exit

/* module_platform_driver() - Helper macro for drivers that don't do* anything special in module init/exit.  This eliminates a lot of* boilerplate.  Each module may only use this macro once, and* calling it replaces module_init() and module_exit()*/
#define module_platform_driver(__platform_driver) \module_driver(__platform_driver, platform_driver_register, \platform_driver_unregister)

        例如对于MTK某平台UFS驱动,传入__platform_driver 参数为

static struct platform_driver ufs_mtk_pltform = {.probe      = ufs_mtk_probe,.remove     = ufs_mtk_remove,.shutdown   = ufshcd_pltfrm_shutdown,.driver = {.name   = "ufshcd-mtk",.pm     = &ufs_mtk_pm_ops,.of_match_table = ufs_mtk_of_match,},
};

2.3 module_driver

/*** module_driver() - Helper macro for drivers that don't do anything* special in module init/exit. This eliminates a lot of boilerplate.* Each module may only use this macro once, and calling it replaces* module_init() and module_exit().** @__driver: driver name* @__register: register function for this driver type* @__unregister: unregister function for this driver type* @...: Additional arguments to be passed to __register and __unregister.** Use this macro to construct bus specific macros for registering* drivers, and do not use it on its own.*/
#define module_driver(__driver, __register, __unregister, ...) \
static int __init __driver##_init(void) \
{ \return __register(&(__driver) , ##__VA_ARGS__); \
} \
module_init(__driver##_init); \
static void __exit __driver##_exit(void) \
{ \__unregister(&(__driver) , ##__VA_ARGS__); \
} \
module_exit(__driver##_exit);

2.4 __platform_driver_register

        注意此处的__register是传进来的__platform_driver_register

/*** __platform_driver_register - register a driver for platform-level devices* @drv: platform driver structure* @owner: owning module/driver*/
int __platform_driver_register(struct platform_driver *drv,struct module *owner)
{drv->driver.owner = owner;drv->driver.bus = &platform_bus_type;return driver_register(&drv->driver);
}
EXPORT_SYMBOL_GPL(__platform_driver_register);

        对bus参数进行赋值 

struct bus_type platform_bus_type = {.name		= "platform",.dev_groups	= platform_dev_groups,.match	= platform_match,.uevent	= platform_uevent,.probe	= platform_probe,.remove	= platform_remove,.shutdown	= platform_shutdown,.dma_configure= platform_dma_configure,.dma_cleanup= platform_dma_cleanup,.pm	= &platform_dev_pm_ops,
};
EXPORT_SYMBOL_GPL(platform_bus_type);

2.5 driver_register

/*** driver_register - register driver with bus* @drv: driver to register** We pass off most of the work to the bus_add_driver() call,* since most of the things we have to do deal with the bus* structures.*/
int driver_register(struct device_driver *drv)
{......other = driver_find(drv->name, drv->bus);if (other) {pr_err("Error: Driver '%s' is already registered, ""aborting...\n", drv->name);return -EBUSY;}ret = bus_add_driver(drv);......
}
EXPORT_SYMBOL_GPL(driver_register);

2.6 bus_add_driver

        drv->bus->p->drivers_autoprobe默认是1,结构体定义时就赋值了

struct subsys_private {...unsigned int drivers_autoprobe:1;    
}
/*** bus_add_driver - Add a driver to the bus.* @drv: driver.*/
int bus_add_driver(struct device_driver *drv)
{......if (drv->bus->p->drivers_autoprobe) {error = driver_attach(drv);if (error)goto out_del_list;}......
}

2.7 driver_attach

/*** driver_attach - try to bind driver to devices.* @drv: driver.** Walk the list of devices that the bus has on it and try to* match the driver with each one.  If driver_probe_device()* returns 0 and the @dev->driver is set, we've found a* compatible pair.*/
int driver_attach(struct device_driver *drv)
{return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);
}
EXPORT_SYMBOL_GPL(driver_attach);

2.8 bus_for_each_dev

        此函数 fn 即为  __driver_attach 函数指针,data参数 是 drv

int bus_for_each_dev(struct bus_type *bus, struct device *start,void *data, int (*fn)(struct device *, void *))
{struct klist_iter i;struct device *dev;int error = 0;if (!bus || !bus->p)return -EINVAL;klist_iter_init_node(&bus->p->klist_devices, &i,(start ? &start->p->knode_bus : NULL));while (!error && (dev = next_device(&i)))error = fn(dev, data);klist_iter_exit(&i);return error;
}
EXPORT_SYMBOL_GPL(bus_for_each_dev);

2.9 __driver_attach 

static int __driver_attach(struct device *dev, void *data){......ret = driver_match_device(drv, dev);......ret = driver_probe_device(drv, dev);......
}
2.9.1 driver_match_device
static inline int driver_match_device(struct device_driver *drv,struct device *dev)
{return drv->bus->match ? drv->bus->match(dev, drv) : 1;
}/* 返回 1 是可以继续往下走的 ret <= 0 不行*/

        可以看到在Register时有match回调 

struct bus_type platform_bus_type = {.......match	= platform_match,.probe	= platform_probe,......
};
2.9.1.1 platform_match
static int platform_match(struct device *dev, struct device_driver *drv)
{struct platform_device *pdev = to_platform_device(dev);struct platform_driver *pdrv = to_platform_driver(drv);/* When driver_override is set, only bind to the matching driver */if (pdev->driver_override)return !strcmp(pdev->driver_override, drv->name);/* Attempt an OF style match first */if (of_driver_match_device(dev, drv))return 1;/* Then try ACPI style match */if (acpi_driver_match_device(dev, drv))return 1;/* Then try to match against the id table */if (pdrv->id_table)return platform_match_id(pdrv->id_table, pdev) != NULL;/* fall-back to driver name match */return (strcmp(pdev->name, drv->name) == 0);
}
2.9.1.2 of_driver_match_device
/*** of_driver_match_device - Tell if a driver's of_match_table matches a device.* @drv: the device_driver structure to test* @dev: the device structure to match against*/
static inline int of_driver_match_device(struct device *dev,const struct device_driver *drv)
{return of_match_device(drv->of_match_table, dev) != NULL;
}

         of_match_table定义如下

static struct platform_driver ufs_mtk_pltform = {.probe      = ufs_mtk_probe,.remove     = ufs_mtk_remove,.shutdown   = ufshcd_pltfrm_shutdown,.driver = {.name   = "ufshcd-mtk",.pm     = &ufs_mtk_pm_ops,.of_match_table = ufs_mtk_of_match,},
};
static const struct of_device_id ufs_mtk_of_match[] = {{ .compatible = "mediatek,mtxxxx-ufshci" },
};
2.9.1.3 of_match_device
const struct of_device_id *of_match_device(const struct of_device_id *matches,const struct device *dev)
{if (!matches || !dev->of_node || dev->of_node_reused)return NULL;return of_match_node(matches, dev->of_node);
}
EXPORT_SYMBOL(of_match_device);
2.9.1.4 of_match_node
const struct of_device_id *of_match_node(const struct of_device_id *matches,const struct device_node *node)
{match = __of_match_node(matches, node);
}
EXPORT_SYMBOL(of_match_node);
2.9.1.5 __of_match_node
static
const struct of_device_id *__of_match_node(const struct of_device_id *matches,const struct device_node *node)
{for (; matches->name[0] ||matches->type[0] || matches->compatible[0]; matches++) { /* 每次循环,选择Vendor驱动中的match table结构体数组的下一个比较 */score = __of_device_is_compatible(node, matches->compatible,matches->type, matches->name);if (score > best_score) {best_match = matches;best_score = score;}}return best_match;
}
2.9.1.6 __of_device_is_compatible
static int __of_device_is_compatible(const struct device_node *device,const char *compat, const char *type, const char *name)
{......if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {score = INT_MAX/2 - (index << 2);break;}......
}

        cp即为从设备树节点中获取的compatible信息,示例如下

ufshci: ufshci@112b0000 {compatible = "mediatek,mtxxxx-ufshci";reg = <0 0x112b0000 0 0x2a00>;
}
2.9.2 driver_probe_device
static int driver_probe_device(struct device_driver *drv, struct device *dev)
{......ret = __driver_probe_device(drv, dev);......
}
2.9.2.1 __driver_probe_device

        initcall_debug是一个内核参数,可以跟踪initcall,用来定位内核初始化的问题。在cmdline中增加initcall_debug后,内核启动过程中会在调用每一个init函数前有一句打印,结束后再有一句打印并且输出了该Init函数运行的时间,通过这个信息可以用来定位启动过程中哪个init函数运行失败以及哪些init函数运行时间较长

        really_probe_debug()内部还是调用了really _probe()

static int __driver_probe_device(struct device_driver *drv, struct device *dev)
{......if (initcall_debug)ret = really_probe_debug(dev, drv);elseret = really_probe(dev, drv);......
}
2.9.2.2 really_probe
static int really_probe(struct device *dev, struct device_driver *drv)
{......ret = call_driver_probe(dev, drv);......
}
2.9.2.3 call_driver_probe
static int call_driver_probe(struct device *dev,struct device_driver *drv)
{......if (dev->bus->probe)ret = dev->bus->probe(dev);else if (drv->probe)ret = drv->probe(dev);......
}
2.9.2.4 platform_probe

        不管走没有dev->bus->probe,最终都会走到drv->probe

static int platform_probe(struct device *_dev)
{struct platform_driver *drv = to_platform_driver(_dev->driver);struct platform_device *dev = to_platform_device(_dev);......if (drv->probe) {ret = drv->probe(dev);if (ret)dev_pm_domain_detach(_dev, true);}......
}

        此时驱动匹配设备成功,会走到之前Register的probe 

static struct platform_driver ufs_mtk_pltform = {.probe      = ufs_mtk_probe,......
};

三、设备匹配驱动过程简述

3.1 整体调用逻辑

解析设备树|-- of_platform_default_populate_init|-- of_platform_default_populate|-- of_platform_populate|-- of_platform_bus_create|-- of_platform_device_create_pdata|-- of_device_add|-- device_add |-- bus_probe_device|-- device_initial_probe|-- __device_attach|-- bus_for_each_drv|-- __device_attach_driver|-- driver_match_device|-- driver_probe_device/* 自己编写module,使用Platform_device_register()也会走到device_add() */

3.2 解析设备树

        在Linux kernel初始化时,会解析Bootloader传递的设备树信息,设备树中满足下列条件的节点能被转换为内核里的platform_device

(1)根节点下含有compatile属性的子节点,会转换为platform_device;
(2)含有特定compatile属性的节点的子节点,会转换为platform_device,
如果一个节点的compatile属性,它的值是这4者之一:“simple-bus”,“simple-mfd”,“isa”,“arm,amba-bus”, 那么它的子结点(需含compatile属性)也可以转换为platform_device。
(3)总线I2C、SPI节点下的子节点:不转换为platform_device,  某个总线下到子节点,应该交给对应的总线驱动程序来处理, 它们不应该被转换为platform_device。

3.2.1 start_kernel
arch/arm64/kernel/head.S....../* 准备好C语言环境 */bl	start_kernel
init/main.casmlinkage __visible void __init start_kernel(void)
{char *command_line;......setup_arch(&command_line);......
}
3.2.2 setup_arch
void __init setup_arch(char **cmdline_p)
{......arch_mem_init(cmdline_p);......
}
3.2.3 arch_mem_init
static void __init arch_mem_init(char **cmdline_p)
{plat_mem_setup();  //1.解析设备树三个重要节点......device_tree_init();//2.解析所有子节点
}
3.2.4 plat_mem_setup
void __init plat_mem_setup(void)
{......if (loongson_fdt_blob)__dt_setup_arch(loongson_fdt_blob);
}
3.2.4.1 __dt_setup_arch
void __init __dt_setup_arch(void *bph)
{if (!early_init_dt_scan(bph))return;mips_set_machine_name(of_flat_dt_get_machine_name());
}
3.2.4.2 early_init_dt_scan
bool __init early_init_dt_scan(void *params)
{......status = early_init_dt_verify(params);......early_init_dt_scan_nodes();
}
3.2.4.3 early_init_dt_scan_nodes

        解析三个对于系统非常重要的节点 

void __init early_init_dt_scan_nodes(void)
{/* chosen节点操作,将bootargs拷贝到boot_command_line指向的内存,boot_command_line是一个全局变量 */of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);/* 根据根节点的#address-cells属性和#size-cells属性初始化全局变量dt_root_size_cells和dt_root_addr_cells */of_scan_flat_dt(early_init_dt_scan_root, NULL);/* 配置内存 起始地址,大小等 */of_scan_flat_dt(early_init_dt_scan_memory, NULL);
}
3.2.5 device_tree_init
void __init device_tree_init(void)
{......if (early_init_dt_verify(initial_boot_params))unflatten_and_copy_device_tree();
}
3.2.5.1 unflatten_and_copy_device_tree
void __init unflatten_and_copy_device_tree(void)
{......unflatten_device_tree();
}
3.2.5.2 unflatten_device_tree
void __init unflatten_device_tree(void)
{__unflatten_device_tree(initial_boot_params, NULL, &of_root,early_init_dt_alloc_memory_arch, false);......
}
3.2.5.3 __unflatten_device_tree
static void __unflatten_device_tree(const void *blob,struct device_node **mynodes,void * (*dt_alloc)(u64 size, u64 align))
{/* First pass, scan for size */......size = (unsigned long)unflatten_dt_node(blob, NULL, &start, NULL, NULL, 0, true);......
}
3.2.5.4 __unflatten_device_tree
static void * unflatten_dt_node(const void *blob,void *mem,int *poffset,struct device_node *dad,struct device_node **nodepp,unsigned long fpsize,bool dryrun)
{const __be32 *p;struct device_node *np;struct property *pp, **prev_pp = NULL;const char *pathp;unsigned int l, allocl;static int depth;int old_depth;int offset;int has_name = 0;int new_format = 0;/* 获取node节点的name指针到pathp中 */pathp = fdt_get_name(blob, *poffset, &l);if (!pathp)return mem;allocl = ++l;/* version 0x10 has a more compact unit name here instead of the full* path. we accumulate the full path size using "fpsize", we'll rebuild* it later. We detect this because the first character of the name is* not '/'.*/if ((*pathp) != '/') {new_format = 1;if (fpsize == 0) {/* root node: special case. fpsize accounts for path* plus terminating zero. root node only has '/', so* fpsize should be 2, but we want to avoid the first* level nodes to have two '/' so we use fpsize 1 here*/fpsize = 1;allocl = 2;l = 1;pathp = "";} else {/* account for '/' and path size minus terminal 0* already in 'l'*/fpsize += l;allocl = fpsize;}}/* 分配struct device_node内存,包括路径全称大小 */np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,__alignof__(struct device_node));if (!dryrun) {char *fn;of_node_init(np);/* 填充full_name,full_name指向该node节点的全路径名称字符串 */np->full_name = fn = ((char *)np) + sizeof(*np);if (new_format) {/* rebuild full path for new format */if (dad && dad->parent) {strcpy(fn, dad->full_name);fn += strlen(fn);}*(fn++) = '/';}memcpy(fn, pathp, l);/* 节点挂接到相应的父节点、子节点和姊妹节点 */prev_pp = &np->properties;if (dad != NULL) {np->parent = dad;np->sibling = dad->child;dad->child = np;}}/* 处理该node节点下面所有的property */for (offset = fdt_first_property_offset(blob, *poffset);(offset >= 0);(offset = fdt_next_property_offset(blob, offset))) {const char *pname;u32 sz;if (!(p = fdt_getprop_by_offset(blob, offset, &pname, &sz))) {offset = -FDT_ERR_INTERNAL;break;}if (pname == NULL) {pr_info("Can't find property name in list !\n");break;}if (strcmp(pname, "name") == 0)has_name = 1;pp = unflatten_dt_alloc(&mem, sizeof(struct property),__alignof__(struct property));if (!dryrun) {/* We accept flattened tree phandles either in* ePAPR-style "phandle" properties, or the* legacy "linux,phandle" properties.  If both* appear and have different values, things* will get weird.  Don't do that. *//* 处理phandle,得到phandle值 */if ((strcmp(pname, "phandle") == 0) ||(strcmp(pname, "linux,phandle") == 0)) {if (np->phandle == 0)np->phandle = be32_to_cpup(p);}/* And we process the "ibm,phandle" property* used in pSeries dynamic device tree* stuff */if (strcmp(pname, "ibm,phandle") == 0)np->phandle = be32_to_cpup(p);pp->name = (char *)pname;pp->length = sz;pp->value = (__be32 *)p;*prev_pp = pp;prev_pp = &pp->next;}}/* with version 0x10 we may not have the name property, recreate* it here from the unit name if absent*//* 为每个node节点添加一个name的属性 */if (!has_name) {const char *p1 = pathp, *ps = pathp, *pa = NULL;int sz;/* 属性name的value值为node节点的名称,取“/”和“@”之间的子串,设备和驱动的别名匹配用的就是这个地方的name */while (*p1) {if ((*p1) == '@')pa = p1;if ((*p1) == '/')ps = p1 + 1;p1++;}if (pa < ps)pa = p1;sz = (pa - ps) + 1;pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,__alignof__(struct property));if (!dryrun) {pp->name = "name";pp->length = sz;pp->value = pp + 1;*prev_pp = pp;prev_pp = &pp->next;memcpy(pp->value, ps, sz - 1);((char *)pp->value)[sz - 1] = 0;}}/* 填充device_node结构体中的name和type成员 */if (!dryrun) {*prev_pp = NULL;np->name = of_get_property(np, "name", NULL);np->type = of_get_property(np, "device_type", NULL);if (!np->name)np->name = "<NULL>";if (!np->type)np->type = "<NULL>";}old_depth = depth;*poffset = fdt_next_node(blob, *poffset, &depth);if (depth < 0)depth = 0;/* 递归调用node节点下面的子节点 */while (*poffset > 0 && depth > old_depth)mem = unflatten_dt_node(blob, mem, poffset, np, NULL,fpsize, dryrun);if (*poffset < 0 && *poffset != -FDT_ERR_NOTFOUND)pr_err("unflatten: error %d processing FDT\n", *poffset);/** Reverse the child list. Some drivers assumes node order matches .dts* node order*/if (!dryrun && np->child) {struct device_node *child = np->child;np->child = NULL;while (child) {struct device_node *next = child->sibling;child->sibling = np->child;np->child = child;child = next;}}if (nodepp)*nodepp = np;return mem;
}

3.3 设备发起匹配

        如果不是走的platform_device_register(),那么会走下面的流程,从device_add()开始后面就是一样的 

3.3.1 of_platform_default_populate_init

        此函数就是为了在设备树解析出来后进行驱动匹配的,会在内核初始化阶段调用

static int __init of_platform_default_populate_init(void)
{....../* Populate everything else. */of_platform_default_populate(NULL, NULL, NULL);......
}
arch_initcall_sync(of_platform_default_populate_init);
arch_initcall_sync(of_platform_default_populate_init);start_kernel|-- rest_init();|-- pid = kernel_thread(kernel_init, NULL, CLONE_FS);|-- kernel_init|-- kernel_init_freeable();|-- do_basic_setup();|-- do_initcalls();for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++)do_initcall_level(level);  // do_initcall_level(3)for (fn = initcall_levels[3]; fn < initcall_levels[3+1]; fn++)do_one_initcall(initcall_from_entry(fn)); /*就是调用"arch_initcall_sync*/
3.3.2 of_platform_default_populate
int of_platform_default_populate(struct device_node *root,const struct of_dev_auxdata *lookup,struct device *parent)
{return of_platform_populate(root, of_default_bus_match_table, lookup,parent);
}
EXPORT_SYMBOL_GPL(of_platform_default_populate);
 3.3.3 of_platform_populate
int of_platform_populate(struct device_node *root,const struct of_device_id *matches,const struct of_dev_auxdata *lookup,struct device *parent)
{......//遍历根节点下的每一个子设备节点并把device_node的信息填充到创建platform_device中for_each_child_of_node(root, child) {rc = of_platform_bus_create(child, matches, lookup, parent, true);if (rc) {of_node_put(child);break;}}......
}
EXPORT_SYMBOL_GPL(of_platform_populate);
  3.3.4 of_platform_bus_create
static int of_platform_bus_create(struct device_node *bus,const struct of_device_id *matches,const struct of_dev_auxdata *lookup,struct device *parent, bool strict)
{......dev = of_platform_device_create_pdata(bus, bus_id, platform_data, parent);
}
  3.3.5 of_platform_device_create_pdata
static struct platform_device *of_platform_device_create_pdata(struct device_node *np,const char *bus_id,void *platform_data,struct device *parent)
{......//of_device_add函数就是把platform_device用平台总线去匹配驱动了if (of_device_add(dev) != 0) {platform_device_put(dev);goto err_clear_flag;}
}
  3.3.6 of_device_add
int of_device_add(struct platform_device *ofdev)
{......return device_add(&ofdev->dev);
}
 3.3.7 device_add
int device_add(struct device *dev)
{......bus_probe_device(dev);
}
EXPORT_SYMBOL_GPL(device_add);
  3.3.8 bus_probe_device
void bus_probe_device(struct device *dev)
{......if (bus->p->drivers_autoprobe)device_initial_probe(dev);......
}
3.3.9 device_initial_probe
void device_initial_probe(struct device *dev)
{__device_attach(dev, true);
}
3.3.10 __device_attach
static int __device_attach(struct device *dev, bool allow_async)
{......ret = bus_for_each_drv(dev->bus, NULL, &data,__device_attach_driver);
}
3.3.11 bus_for_each_drv

        遍历bus上的driver进行匹配

int bus_for_each_drv(struct bus_type *bus, struct device_driver *start,void *data, int (*fn)(struct device_driver *, void *))
{......klist_iter_init_node(&bus->p->klist_drivers, &i,start ? &start->p->knode_bus : NULL);while ((drv = next_driver(&i)) && !error)error = fn(drv, data);klist_iter_exit(&i);
}
EXPORT_SYMBOL_GPL(bus_for_each_drv);
3.3.12 __device_attach_driver
static int __device_attach_driver(struct device_driver *drv, void *_data)
{......ret = driver_match_device(drv, dev);/* 匹配成功调用platform_driver的probe函数进行硬件的初始化动作 */return driver_probe_device(drv, dev);
}

此后,函数的内容就和驱动匹配设备时流程一致了,先判断是否match,然后调用probe

【参考博客】

[1] Linux设备驱动和设备匹配过程_linux驱动和设备匹配过程-CSDN博客

[2] platform 总线_怎么查询platform 总线-CSDN博客

[3] Linux Driver 和Device匹配过程分析(1)_linux设备驱动和设备树的match过程-CSDN博客

[4] Linux驱动(四)platform总线匹配过程_platform平台设备匹配过程-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/846446.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【逻辑回归】Logistic Regression逻辑回归模型学习笔记

文章目录 序言1. 线性回归2. 逻辑回归2.1 引入逻辑回归的原因2.2 逻辑回归2.3 逻辑回归的应用 3. 逻辑函数3.1 sigmoid函数3.2 sigmoid函数的性质3.3 决策边界3.4 对数几率 4. 损失函数4.1 为什么说逻辑回归时概率类模型4.2 为什么要进行极大似然估计4.3 利用MLE如何推导出损失…

Linux下的配置工具menuconfig+配置文件(Kconfig/.config/defconfig)

我们都知道,嵌入式开发中,或者说C语言中,配置基本都是通过宏定义来决定的,在MCU开发中,代码量比较小,配置项也比较少,我们直接修改对应的宏定义即可。 但是,Linux开发中,操作系统、驱动部分还有应用部分加起来,代码量极大,配置项目也非常多,这时候,就需要对这些配…

HackTheBox-Machines--Cronos

文章目录 0x01 信息收集0x02 命令注入漏洞0x03 权限提升 Cronos 测试过程 0x01 信息收集 1.端口扫描 发现 SSH&#xff08;22&#xff09;、DNS&#xff08;53&#xff09;、HTTP&#xff08;80&#xff09;端口 nmap -sC -sV 10.129.227.2112.53端口开启&#xff0c;进行DNS…

【LeetCode刷题】前缀和解决问题:742.寻找数组的中心下标、238.除自身以外数组的乘积

【LeetCode刷题】Day 15 题目1&#xff1a;742.寻找数组的中心下标思路分析&#xff1a;思路1&#xff1a;前缀和思想 题目2&#xff1a;238.除自身以外数组的乘积思路分析思路1&#xff1a;前缀和思想 题目1&#xff1a;742.寻找数组的中心下标 思路分析&#xff1a; 其实题干…

【软件开发规范篇】前言

作者介绍&#xff1a;本人笔名姑苏老陈&#xff0c;从事JAVA开发工作十多年了&#xff0c;带过大学刚毕业的实习生&#xff0c;也带过技术团队。最近有个朋友的表弟&#xff0c;马上要大学毕业了&#xff0c;想从事JAVA开发工作&#xff0c;但不知道从何处入手。于是&#xff0…

Linux——多线程(三)

在上一篇博客中我们讲到了在加锁过程中&#xff0c;线程竞争锁是自由竞争的&#xff0c;竞争能力强的线程会导致其他线程抢不到锁&#xff0c;访问不了临界资源导致其他线程一直阻塞&#xff0c;造成其它线程的饥饿问题&#xff0c;想要解决此问题又涉及一个新概念线程同步 一…

18 EEPROM读写

EEPROM 简介 EEPROM (Electrically Erasable Progammable Read Only Memory&#xff0c;E2PROM)即电可擦除可编程只读存储器&#xff0c;是一种常用的非易失性存储器&#xff08;掉电数据不丢失&#xff09;&#xff0c;EEPROM 有多种类型的产品&#xff0c;此次实验使用的是A…

32位与64位程序下函数调用的异同——计科学习中缺失的内容

前言 今天&#xff0c;通过一个有趣的案例&#xff0c;从反编译的角度看一下C语言中函数参数是如何传递的。 创建main.c文件&#xff0c;将下面实验代码拷贝到main.c文件中。 # main.c #include <stdio.h>int test(int a, int b, int c, int d, int e, int f, int g, …

Docker最新超详细版教程通俗易懂

文章目录 一、Docker 概述1. Docker 为什么出现2. Docker 的历史3. Docker 能做什么 二、Docker 安装1. Docker 的基本组成2. 安装 Docker3. 阿里云镜像加速4. 回顾 hello-world 流程5. 底层原理 三、Docker 的常用命令1. 帮助命令2. 镜像命令dokcer imagesdocker searchdocker…

解锁数据宝藏:高效查找算法揭秘

代码下载链接&#xff1a;https://gitee.com/flying-wolf-loves-learning/data-structure.git 目录 一、查找的原理 1.1 查找概念 1.2 查找方法 1.3平均查找长度 1.4顺序表的查找 1.5 顺序表的查找算法及分析 1.6 折半查找算法及分析 1.7 分块查找算法及分析 1.8 总结…

pytorch学习笔记5

transform 本质上作用是将图片通过transform这个这个工具箱获取想要的结果 tensor就是一个包含神经网络需要的一些理论基础的参数 from torch.utils.tensorboard import SummaryWriter from torchvision import transforms from PIL import Image #tensor数据类型 #通过tra…

1985-2020 年阿拉斯加和育空地区按植物功能类型划分的模型表层覆盖率

ABoVE: Modeled Top Cover by Plant Functional Type over Alaska and Yukon, 1985-2020 1985-2020 年阿拉斯加和育空地区按植物功能类型划分的模型表层覆盖率 简介 文件修订日期&#xff1a;2022-05-31 数据集版本: 1.1 本数据集包含阿拉斯加和育空地区北极和北方地区按…

DPDK基础组件二(igb_uio、kni、rcu)

The Linux driver implementer’s API guide — The Linux Kernel documentation 一、igb_uid驱动 参考博客:https://zhuanlan.zhihu.com/p/543217445 UIO(Userspace I/O)是运行在用户空间的I/O技术 代码位置:dpdk----/kernel/linux/igb_uio目录 igb_uio 是 dpdk 内部实…

学习数据分析思维的共鸣

在这篇文章中&#xff0c;我将分享自己在成长过程中对数据分析思维的领悟&#xff0c;从《数据分析思维-产品经理的成长笔记》这本书引发的共鸣&#xff0c;到数据分析在不同岗位的广泛应用&#xff0c;再到如何将学习与快乐联系起来&#xff0c;以及沟通在数据分析中的重要性。…

cocos入门4:项目目录结构

Cocos Creator 项目结构教程 Cocos Creator 是一个功能强大的游戏开发工具&#xff0c;它为开发者提供了直观易用的界面和强大的功能来快速创建游戏。在使用 Cocos Creator 开发游戏时&#xff0c;合理地组织项目结构对于项目的可维护性和扩展性至关重要。以下是一个关于如何设…

设计模式(十)结构型模式---享元模式(flyweight)

文章目录 享元模式简介结构UML图具体实现UML图代码实现 享元模式简介 享元模式&#xff08;fly weight pattern&#xff09;主要是通过共享对象来减少系统中对象的数量&#xff0c;其本质就是缓存共享对象&#xff0c;降低内存消耗。享元模式将需要重复使用的对象分为两个状态…

7-14 字节序(Endianness)---PTA实验C++

一、题目描述 “内存寻址的最小单位是字节”——明白。 “每个字节有唯一的编号&#xff0c;称为地址”——明白。 “C中int通常为四个字节”——了解。 “int x 1;最低字节是1还是0&#xff1f;——纳尼&#xff1f; 事实上&#xff0c;这里有点小小分歧&#xff1a; 多字…

IDEA 学习之 命令行太长问题

现象 Error running App Command line is too long. In order to reduce its length classpath file can be used. Would you like to enable classpath file mode for all run configurations of your project?解决办法 办法一 .idea\workspace.xml ——> <compone…

软件开发整体介绍

黑马程序员瑞吉外卖 文章目录 一、软件开发流程二、角色分工三、软件环境 一、软件开发流程 二、角色分工 三、软件环境

GraphQL(2):使用express和GraphQL编写helloworld

1 安装express、graphql以及express-graphql 在项目的目录下运行一下命令。 npm init -y npm install express graphql express-graphql -S 2 新建helloworld.js 代码如下&#xff1a; const express require(express); const {buildSchema} require(graphql); const grap…