[机器学习]GPT LoRA 大模型微调,生成猫耳娘

在这里插入图片描述

往期热门专栏回顾

专栏描述
Java项目实战介绍Java组件安装、使用;手写框架等
Aws服务器实战Aws Linux服务器上操作nginx、git、JDK、Vue
Java微服务实战Java 微服务实战,Spring Cloud Netflix套件、Spring Cloud Alibaba套件、Seata、gateway、shadingjdbc等实战操作
毕设大数据、Java Sprinboot、微服务等
Java基础篇Java基础闲聊,已出HashMap、String、StringBuffer等源码分析,JVM分析,持续更新中
Springboot篇从创建Springboot项目,到加载数据库、静态资源、输出RestFul接口、跨越问题解决到统一返回、全局异常处理、Swagger文档
Spring MVC篇从创建Spring MVC项目,到加载数据库、静态资源、输出RestFul接口、跨越问题解决到统一返回
华为云服务器实战华为云Linux服务器上操作nginx、git、JDK、Vue等,以及使用宝塔运维操作添加Html网页、部署Springboot项目/Vue项目等
Java爬虫通过Java+Selenium+GoogleWebDriver 模拟真人网页操作爬取花瓣网图片、bing搜索图片等
Vue实战讲解Vue3的安装、环境配置,基本语法、循环语句、生命周期、路由设置、组件、axios交互、Element-ui的使用等
Spring讲解Spring(Bean)概念、IOC、AOP、集成jdbcTemplate/redis/事务等

🌹作者主页:青花锁 🌹简介:Java领域优质创作者🏆、Java微服务架构公号作者😄

🌹简历模板、学习资料、面试题库、技术互助

🌹文末获取联系方式 📝

在这里插入图片描述


文章目录

  • 往期热门专栏回顾
  • 1、前言介绍
    • 1.1、文生图效果
  • 2、LoRA的工作原理
  • 3、LoRA的应用场景
  • 4、LoRA的优势
  • 5、LoRA的挑战
  • 6、LoRA的实现
  • 7、未来展望


1、前言介绍

在深度学习和自然语言处理领域,大规模预训练模型(如GPT-3、BERT等)已经展示了强大的能力。然而,训练这些模型需要大量的计算资源和数据,这对于许多组织和个人来说并不现实。LoRA(Low-Rank Adaptation)作为一种轻量级的微调方法,提供了一种高效且经济的解决方案。本文将详细介绍LoRA的工作原理、应用场景、以及其在大模型微调中的优势和挑战。

1.1、文生图效果

提示词:
//quality, (masterpiece:1.3), (detailed), ((,best quality,)),//,cute,1girl,//,brown cat ears,animal ear fluff,(light_brown hair:1.3),(red hair: 1.1),(red inner hair: 1.4), (straight bangs: 1.4),(,long_hair,single braid :1.4),(Ahoge),(detailed eyes,blue_eyes:1.4),medium chest,//, (yellow hairpin,crescent-shaped hairpin:1.4),off_shoulders,large red ribbon,(idol costume:1.4),thigh strap,frilled skirt,gloves,//,blush,smiling,upper_teeth,looking_down,//,hand_up,(holding microphone:1.3),(standing on stage),//,indoors,crowd of audience,Glow stick,scenery,colorful light particles,(colorful lights:1.3),(laser light:1.4),glow_in_the_dark,cowboy_shot,dynamic angle

反向提示词:
NSFW,text,(worst quality:1.331), (low quality:1.331), (normal quality:1.331), large head, extra digits, bad eye, extra fingers, fewer fingers, strange fingers, ((bad hands)), Strange eyes, Many hands, (Many arms), EasyNegativeV2, ng_deepnegative_v1_75t, pregnancy, badhandv4, six fingers, fused fingers, unclear eyes,poorly drawn,cloned face,bad face,

在提示词、反向提示词不变的情况下,我们在导入多个LoRA,并且调整参数,来生成我们想要的图片。

三个LoRA:
在这里插入图片描述

调整LoRA值之后的效果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、LoRA的工作原理

LoRA通过引入低秩矩阵分解技术来微调大型预训练模型。其核心思想是将预训练模型的权重矩阵分解为两个低秩矩阵的乘积,从而减少需要微调的参数数量。具体而言,LoRA假设原始权重矩阵W可以近似表示为两个低秩矩阵A和B的乘积,即W ≈ AB,其中A和B的秩远小于W的秩。

在微调过程中,LoRA仅优化低秩矩阵A和B,而保持原始模型权重W不变。这种方法不仅降低了计算复杂度,还减少了存储和传输的开销,使得微调过程更加高效。

3、LoRA的应用场景

  • 自然语言处理(NLP): LoRA在NLP任务中表现出色,如文本分类、机器翻译、情感分析等。通过微调预训练模型,LoRA可以快速适应不同的语言任务和数据集。

  • 计算机视觉: 在图像分类、目标检测和图像生成等任务中,LoRA也展示了强大的适应能力。通过微调预训练的视觉模型,LoRA可以在有限的计算资源下实现高效的图像处理。

  • 语音识别: LoRA在语音识别和语音生成任务中同样具有广泛的应用前景。通过微调预训练的语音模型,LoRA可以有效提升语音识别的准确性和生成质量。

4、LoRA的优势

  • 高效性: LoRA通过低秩矩阵分解显著减少了需要微调的参数数量,从而降低了计算复杂度和存储开销。这使得微调过程更加高效,尤其适合资源受限的环境。

  • 灵活性: LoRA可以应用于各种预训练模型和任务,具有广泛的适应性。无论是NLP、计算机视觉还是语音识别,LoRA都能提供有效的微调方案。

  • 经济性: 相对于全量微调(fine-tuning)大模型,LoRA需要的计算资源和时间成本大大降低。这对于小型团队和个人研究者来说尤为重要,使他们能够在有限的资源下实现高效的模型优化。

5、LoRA的挑战

  • 低秩近似的局限性: LoRA依赖于低秩矩阵分解来近似表示权重矩阵。然而,在某些情况下,低秩近似可能无法充分捕捉复杂的模型结构和数据特征,导致性能下降。

  • 模型选择的复杂性: 在实际应用中,不同任务和数据集对模型的需求各不相同。选择合适的预训练模型和微调策略仍然是一个挑战,需要进行大量的实验和调优。

  • 安全性和隐私: 在微调过程中,模型可能会接触到敏感数据。如何在保证数据安全和隐私的前提下进行高效的微调,是LoRA面临的另一个重要挑战。

6、LoRA的实现

为了更好地理解LoRA的实际应用,以下是一个基于PyTorch的LoRA实现示例。

import torch
import torch.nn as nnclass LoRA(nn.Module):def __init__(self, model, rank=4):super(LoRA, self).__init__()self.model = modelself.rank = rankself.low_rank_modules = nn.ModuleList()for name, module in model.named_modules():if isinstance(module, nn.Linear):in_features, out_features = module.in_features, module.out_featuresA = nn.Parameter(torch.randn(out_features, rank))B = nn.Parameter(torch.randn(rank, in_features))self.low_rank_modules.append((name, A, B))def forward(self, x):for name, A, B in self.low_rank_modules:module = dict(self.model.named_modules())[name]W = module.weightlow_rank_weight = A @ Bmodule.weight = nn.Parameter(W + low_rank_weight)return self.model(x)

7、未来展望

随着深度学习和大规模预训练模型的发展,LoRA作为一种高效的微调方法,将在更多领域和应用中发挥重要作用。未来,LoRA可能会进一步优化低秩分解技术,提高近似的精度和效率。此外,LoRA还可以与其他优化技术结合,形成更强大的微调框架。

总之,LoRA为大规模预训练模型的高效微调提供了新的思路和方法。通过降低计算复杂度和存储开销,LoRA使得更多人能够利用预训练模型的强大能力,推动人工智能技术的普及和应用。期待未来LoRA在更多领域中的创新和突破,为深度学习的发展注入新的活力。


资料获取,更多粉丝福利,关注下方公众号获取

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/845838.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

牛客网刷题 | BC104 翻转金字塔图案

目前主要分为三个专栏,后续还会添加: 专栏如下: C语言刷题解析 C语言系列文章 我的成长经历 感谢阅读! 初来乍到,如有错误请指出,感谢! 描述 KiKi学习了循环&am…

万字详解 MySQL MGR 高可用集群搭建

文章目录 1、MGR 前置介绍1.1、什么是 MGR1.2、MGR 优点1.3、MGR 缺点1.4、MGR 适用场景 2、MySQL MGR 搭建流程2.1、环境准备2.2、搭建流程2.2.1、配置系统环境2.2.2、安装 MySQL2.2.3、配置启动 MySQL2.2.4、修改密码、设置主从同步2.2.5、安装 MGR 插件 3、MySQL MGR 故障转…

智慧排水监测系统方案

智慧排水监测系统方案 智慧排水监测系统作为现代城市基础设施管理的重要组成部分,旨在通过先进的信息技术手段,实现对城市排水系统的全面、实时、高效的远程监控与管理。该系统整合了物联网技术、大数据分析、云计算平台与人工智能算法,不仅…

告别暗黄,唤醒肌肤

🎭 想象一下,你的皮肤是舞台上的主角,但最近它似乎有些“疲惫”和“黯淡”,仿佛失去了往日的星光✨。别急,今天,我要为你揭秘一个能让肌肤重新焕发光彩的“魔法”——胶原蛋白!🎩 &a…

docker查看容器目录挂载

查看命令 docker inspect --format{{ json .Mounts }} <container_id_or_name> | jq 示例 docker inspect --format{{ json .Mounts }} af656ae540af | jq输出

FreeRTOS笔记 - 二(正点原子)

一&#xff0c;任务创建和删除 具体的参数&#xff08;看视频&#xff09; 1&#xff0c;动态和静态创建的区别 动态: 任务的任务控制块以及任务的栈空间所需的内存&#xff0c;均由FreeRTOS从 FreeRTOS 管理的堆中分配。 静态: 任务的任务控制块以及任务的栈空间所需的内存&am…

vscode设置编辑器文件自动保存

步骤 1.打开vscode的设置 2.在搜索栏输入关键字“保存”&#xff1b; 在 Files: Auto Save 设置项&#xff0c;选择自动保存的模式

java使用资源过高排查

在生产环境中有可能出现某java程序使用资源特别严重&#xff0c;这就需要找到该java进程&#xff0c;然后通过进程去找到是哪个线程的问题&#xff0c;这里我们就是用pidstat工具来排查一下 安装pidstat工具 yum -y install sysstat 查看java服务的pid jps 通过pid查看线…

C# WinForm —— 25 ProgressBar 介绍与使用

1. 简介 用于显示某个操作的进度 2. 常用属性 属性解释(Name)控件ID&#xff0c;在代码里引用的时候会用到,一般以 pbar 开头ContextMenuStrip右键菜单Enabled控件是否可用ForeColor用于显示进度的颜色MarqueeAnimationSpeed进度条动画更新的速度&#xff0c;以毫秒为单位M…

CSAPP Lab08——Proxy Lab完成思路

蓝色的思念 突然演变成了阳光的夏天 空气中的温暖不会很遥远 ——被风吹过的夏天 完整代码见&#xff1a;CSAPP/proxylab-handout at main SnowLegend-star/CSAPP (github.com) Q&#xff1a;计算机网络中port的作用是什么&#xff1f; A&#xff1a;在计算机网络中&#xff…

qt中实现多语言功能

qt中实现多语言功能 原理&#xff1a; 其本质就是生成ts文件&#xff0c;然后使用Linguist软件手工翻译&#xff0c;再生成qm文件&#xff0c;最后在主程序的开始加载不同的qm文件&#xff0c;实现多语言。 步骤&#xff1a; 修改程序文件 在pro文件中加入说明 TRANSLATI…

Socket网络通讯入门(一)

提示&#xff1a;能力有限&#xff0c;不足以及错误之处还请指出&#xff01; 文章目录 前言一、 计算机网络 OSI、TCP/IP、五层协议 体系结构1.OSI七层模型每层的作用2.TCP/IP协议分成3.五层协议体系结构 二、Socket服务端和客户端 简单通信1.服务端代码2.客户端 总结 前言 简…

vs - 在win10中安装vs2013update5

文章目录 vs - 在win10中安装vs2013update5概述笔记直接安装vs2013-update5报错先安装vs2013原版安装 vs2013 update5测试备注END vs - 在win10中安装vs2013update5 概述 用VS2019写的程序&#xff0c;在早期windows(e.g. win7, win8.1)上安装时&#xff0c;需要UCRT。 UCRT是…

SpringBoot整合jasypt加密配置文件敏感信息

SpringBoot整合jasypt加密配置文件敏感信息 在项目中我们需要对配置文件的一些敏感信息进行加密处理&#xff0c;比如数据库账户密码&#xff0c;避免直接暴露出来&#xff0c;这种场景常常用于生产环境&#xff0c;我们不想让开发人员知道生产库的密码&#xff0c;有运维人员…

基础篇01——SQL的基本语法和分类

MySQL数据库安装与基本使用 安装教程参见&#xff1a;通过zip安装MySQL 通过命令行启动和停止MySQL服务命令 前提&#xff1a;安装MySQL成功之后 启动服务&#xff1a;net start mysql 停止服务&#xff1a;net stop mysql 通过命令行连接mysql 可以通过mysql的客户端命令行…

入手戴尔R720,通过iDRAC查看系统信息

想入手服务器很久了&#xff0c;一直担心功耗太高&#xff0c;今天狠心搞了一台戴尔服务器R720。 需求 开虚拟机&#xff0c;核心数要多 学习以下 Windows云桌面AD域控office online serverubuntu试验机 随便折腾不怕玩坏 最好两个网口以上 稳定 四个以上硬盘位 ‍ 为什么是…

在AutoDL上部署百川2大模型

在AutoDL上部署百川2大模型 AUTO DL相关 官网地址 选择容器实例 租用新实例 选择配置 我这里选择3090 , 硬盘尽量选择可以扩容的 , CUDA版本尽量高一点 选择镜像 先将机器关机 先扩容一下数据盘 50G就可以了 然后选择无卡模式开机 因为无卡模式下开机费用会变低 使用JupyterL…

1.3Java对象和类

Java作为一种面向对象语言。支持以下基本概念&#xff1a; 多态继承封装抽象类对象实例方法重载 本节我们重点研究对象和类的概念。 对象&#xff1a;对象是类的一个实例&#xff08;对象不是找个女朋友&#xff09;&#xff0c;有状态和行为。例如&#xff0c;一条狗是一个…

BrainGPT1,一个帮你b站点歌放视频的多模态多轮对话模型

BrainGPT1&#xff0c;一个帮你b站点歌放视频的多模态多轮对话模型 返回论文目录 项目地址 模型地址 作者&#xff1a;华东师范大学&#xff0c;计算机科学与技术学院&#xff0c;智能教育研究院的小怪兽会微笑。 介绍 BrainGPT1是一个工具调用多轮对话模型&#xff0c;与G…

免费实现网站HTTPS访问

HTTPS&#xff08;Hypertext Transfer Protocol Secure&#xff09;是一种基于SSL协议的HTTP安全协议&#xff0c;旨在为客户端&#xff08;浏览器&#xff09;与服务器之间的通信提供加密通道&#xff0c;确保数据在传输过程中的保密性、完整性和身份验证。与传统的HTTP相比&a…