在AutoDL上部署Yi-34B大模型

在AutoDL上部署Yi-34B大模型


Yi介绍

  • Yi 系列模型是 01.AI 从零训练的下一代开源大语言模型。
  • Yi 系列模型是一个双语语言模型,在 3T 多语言语料库上训练而成,是全球最强大的大语言模型之一。Yi 系列模型在语言认知、常识推理、阅读理解等方面表现优异。
    • Yi-34B-Chat 模型在 AlpacaEval Leaderboard 排名第二,仅次于 GPT-4 Turbo,超过了 GPT-4、Mixtral 和 Claude 等大语言模型(数据截止至 2024 年 1 月)
    • Yi-34B 模型在 Hugging Face Open LLM Leaderboard(预训练)与 C-Eval 基准测试中荣登榜首,在中文和英文语言能力方面均超过了其它开源模型,例如,Falcon-180B、Llama-70B 和 Claude(数据截止至 2023 年 11 月)。

部署步骤

硬件要求

部署 Yi 系列模型之前,确保硬件满足以下要求。

模型最低显存推荐GPU示例
Yi-6B-Chat15 GBRTX 3090 RTX 4090 A10 A30
Yi-6B-Chat-4bits4 GBRTX 3060 RTX 4060
Yi-6B-Chat-8bits8 GBRTX 3070 RTX 4060
Yi-34B-Chat72 GB4 x RTX 4090 A800 (80GB)
Yi-34B-Chat-4bits20 GBRTX 3090 RTX 4090 A10 A30 A100 (40GB)
Yi-34B-Chat-8bits38 GB2 x RTX 3090 2 x RTX 4090 A800 (40GB)

运行实例

image-20240228103634489

  • 进入终端
    • image-20240228103723138image-20240228103741512
  • 安装 modelscope
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple modelscope
  • 进入ipython终端
    • ipython

下载模型

from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('01ai/Yi-34B-Chat-4bits', cache_dir='autodl-tmp', revision='master', ignore_file_pattern='.bin')

从modelscope上下载Yi-34B-Chat-4bits模型,存放目录为autodl-tmp

版本是master,去除后缀为.bin的文件,这里只需要下载safetensors后缀的模型

image-20240228110450280

安装 vllm

vLLM是伯克利大学LMSYS组织开源的大语言模型高速推理框架,旨在极大地提升实时场景下的语言模型服务的吞吐与内存使用效率。vLLM是一个快速且易于使用的库,用于 LLM 推理和服务,可以和HuggingFace 无缝集成。vLLM利用了全新的注意力算法「PagedAttention」,有效地管理注意力键和值。

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple vllm
  • 开启 openai 兼容的服务
python -m vllm.entrypoints.openai.api_server \--model /root/autodl-tmp/01ai/Yi-34B-Chat-4bits \--served-model-name 01ai/Yi-34B-Chat-4bits \--trust-remote-code \--max-model-len 2048 -q awq 

– model : 指定模型的位置

– served-model-name : 指定模型的名称

– trust-remote-code : 接收它执行的代码

– max-model-len : 接收的上下文大小

-q awq : 量化方式为awq

  • 查看资源占用
nvidia-smi

image-20240228114659417

显示占用的23G显存

  • 测试服务
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{"model": "01ai/Yi-34B-Chat-4bits","prompt": "San Francisco is a","max_tokens": 7,"temperature": 0
}'

执行 benchmark 测试

  • 关闭之前的API Server服务

  • 开启AutoDL的学术加速

    • source /etc/network_turbo
  • 下载vllm 源码

    • git clone https://github.com/vllm-project/vllm
    • cd vllm/benchmarks
  • 测试

    • python benchmark_throughput.py \--backend vllm \--input-len 128 --output-len 512 \--model /root/autodl-tmp/01ai/Yi-34B-Chat-4bits \-q awq --num-prompts 100 --seed 1100 \--trust-remote-code \--max-model-len 2048
      

gradio 的 chat 组件

  • 安装openai
pip install openai -U
  • 安装gradio
pip install gradio==3.41
  • 创建一个python脚本 chat.py
from openai import OpenAI
import gradio as gr# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"# 创建一个 OpenAI 客户端,用于与 API 服务器进行交互
client = OpenAI(api_key=openai_api_key,base_url=openai_api_base,
)def predict(message, history):# 将聊天历史转换为 OpenAI 格式history_openai_format = [{"role": "system", "content": "你是个靠谱的 AI 助手,尽量详细的解答用户的提问。"}]for human, assistant in history:history_openai_format.append({"role": "user", "content": human })history_openai_format.append({"role": "assistant", "content":assistant})history_openai_format.append({"role": "user", "content": message})# 创建一个聊天完成请求,并将其发送到 API 服务器stream = client.chat.completions.create(model='01ai/Yi-34B-Chat-4bits',   # 使用的模型名称messages= history_openai_format,  # 聊天历史temperature=0.8,                  # 控制生成文本的随机性stream=True,                      # 是否以流的形式接收响应extra_body={'repetition_penalty': 1, 'stop_token_ids': [7]})# 从响应流中读取并返回生成的文本partial_message = ""for chunk in stream:partial_message += (chunk.choices[0].delta.content or "")yield partial_message# 创建一个聊天界面,并启动它,share=True 让 gradio 为我们提供一个 debug 用的域名
gr.ChatInterface(predict).queue().launch(share=True)
  • 开启一个新的终端执行命令: python chat.py

稍等它在终端给我们生成一个 xxxx.gradio.live 的域名,访问这个域名就可以进行测试了。

  • 如果gradio无法生成可分享的外部连接

image-20240228120522790

  • 解决办法 :

    • 1.下载此文件:https://cdn-media.huggingface.co/frpc-gradio-0.2/frpc_linux_amd64
      如果auto服务器下载不到,可以手动上传
      2.将下载的文件重命名为:frpc_linux_amd64_v0.2
      mv frpc_linux_amd64 frpc_linux_amd64_v0.2
      3.将文件移动到以下位置/root/miniconda3/lib/python3.8/site-packages/gradio
      cp frpc_linux_amd64_v0.2 /root/miniconda3/lib/python3.8/site-packages/gradio
      4.给予执行权限
      chmod +x /root/miniconda3/lib/python3.8/site-packages/gradio/frpc_linux_amd64_v0.2
      

image-20240228121358881

效果

  • 3090 运行起来之后,问题问到第二个之后就会OOM,显存几乎全部占满

image-20240228121902280

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/845635.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一键AI抠图,证件照换背景,可部署成自己的应用

1 开发背景 AI抠图技术已经非常成熟,并且有效果非常好的开源模型。 日常中可以用于替换证件照背景 但是网上许多的证件照替换背景 竟然需要收费 鉴于此,便将目前最好的(SOTA)开源抠图模型 BRIA Background Removal v1.4 Model …

前端Vue自定义带加减按钮的数字输入框组件的设计与实现

随着前端技术的不断发展,开发的复杂度日益提升。传统的整块应用开发方式在面对小改动或小功能增加时,常常需要修改大量代码,导致整个系统的逻辑受到影响。为了解决这个问题,组件化开发成为了前端开发的必然趋势。 一、组件化开发…

GPT-4o:新一代人工智能技术的全方位解析引言

目录 🐋引言 🐋梳理 GPT 各版本之间的内容 🦈GPT-1:开创性的起点 🦈 GPT-2:参数规模的大幅提升 🦈 GPT-3:参数爆炸与多任务学习 🦈GPT-4:进一步提升的智…

pdf拆分成有图和无图的pdf(方便打印)

pdf拆分成有图和无图的pdf(方便打印) 原因 打印图片要彩印,每次都要手动弄,打印的时候很麻烦; 随着打印次数的增加,时间就越来越多 为解决此问题,使用python写一个exe解决这个问题 历程 找一个python的GUI界面找到 t…

每日刷题——杭电2156.分数矩阵和杭电2024.C语言合法标识符

杭电2156.分数矩阵 原题链接:Problem - 2156 题目描述 Problem Description:我们定义如下矩阵: 1/1 1/2 1/3 1/2 1/1 1/2 1/3 1/2 1/1 矩阵对角线上的元素始终是1/1,对角线两边分数的分母逐个递增。请求出这个矩阵的总和。 Input&#xf…

一套为家政服务行业开发的移动应用程序——家政上门服务app源码 家政上门服务系统源码

家政上门服务系统是一种通过互联网或移动应用平台,为用户提供在线预约、下单、支付和评价家政服务的系统。该系统整合了家政服务资源,使用户能够便捷地找到合适的服务人员,同时也为家政服务人员提供了更多的工作机会。 工作内容 操持家务、护…

Flink CDC - Postgres

1)部署安装Postgres服务 jiangzhongzhouZBMac-C02CW08SM ~ % docker pull postgres Using default tag: latest latest: Pulling from library/postgres latest: Pulling from library/postgres 24c63b8dcb66: Pull complete 2bb0b7dbd861: Pull complete ... D…

mac 安装java jdk8 jdk11 jdk17 等

oracle官网 https://www.oracle.com/java/technologies/downloads/ 查看当前电脑是英特尔的x86 还是arm uname -m 选择指定版本,指定平台的安装包: JDK8 JDK11的,需要当前页面往下拉: 下载到的安装包,双击安装&#x…

怎么使用Python代码在图片里面加文字

在Python中,给图片添加文字可以使用Pillow库(PIL的一个分支),它是一个强大的图像处理库。如果你还没有安装Pillow,可以通过pip安装: pip install Pillow下面使用一个简单的示例,演示如何使用Pi…

TCP的重传机制

TCP 是一个可靠的传输协议,解决了IP层的丢包、乱序、重复等问题。这其中,TCP的重传机制起到重要的作用。 序列号和确认号 之前我们在讲解TCP三次握手时,提到过TCP包头结构,其中有序列号和确认号, 而TCP 实现可靠传输…

数据分析案例一使用Python进行红酒与白酒数据数据分析

源码和数据集链接 以红葡萄酒为例 有两个样本: winequality-red.csv:红葡萄酒样本 winequality-white.csv:白葡萄酒样本 每个样本都有得分从1到10的质量评分,以及若干理化检验的结果 #理化性质字段名称1固定酸度fixed acidity2挥发性酸度volatile acidity3柠檬酸…

Lesson6--排序(初级数据结构完结篇)

【本节目标】 1. 排序的概念及其运用 2. 常见排序算法的实现 3. 排序算法复杂度及稳定性分析 1.排序的概念及其运用 1.1排序的概念 排序 :所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来…

Thread的stop和interrupt的区别

Thread.stop Thread.stop()方法已被废弃。 因为本质上它是不安全的,使用该方法可能会导致数据、资源不一致的问题, public class ThreadDemo {static class MyThread extends Thread {Overridepublic void run() {while (true) {try {Thread.sleep(10…

解决Windows 10通过SSH连接Ubuntu 20.04时的“Permission Denied”错误

在使用SSH连接远程服务器时,我们经常可能遇到各种连接错误,其中“Permission denied, please try again”是较为常见的一种。本文将分享一次实际案例的解决过程,帮助你理解如何排查并解决这类问题。 问题描述 在尝试从Windows 10系统通过SS…

面试题 17.05. 字母与数字(前缀和)

给定一个放有字母和数字的数组,找到最长的子数组,且包含的字母和数字的个数相同。 返回该子数组,若存在多个最长子数组,返回左端点下标值最小的子数组。若不存在这样的数组,返回一个空数组。 示例 1: 输入: ["…

openssl 常用命令demo

RSA Private Key的结构(ASN.1) RSAPrivateKey :: SEQUENCE { version Version, modulus INTEGER, -- n publicExponent INTEGER, -- e privateExponent INTEGER, -- d prime1 INTEGER, -- …

嵌入式人工智能开发:基于TensorFlow Lite和OpenCV的实时姿态估计算法实现

文章目录 引言环境准备人工智能在嵌入式系统中的应用场景代码示例常见问题及解决方案结论 1. 引言 在嵌入式系统中集成人工智能(AI)技术已经成为一种重要的发展方向。实时姿态估计是AI在嵌入式领域的一个高级应用,能够在资源受限的环境中实…

海外动态IP代理可以用来批量注册邮箱吗?

无论是个人还是企业,都需要使用邮箱进行沟通、注册账号、接收通知等多种用途。然而,由于互联网服务商为了防止滥用和垃圾邮件的传播,通常对注册邮箱设置了一定的限制,如IP限制、验证码验证等。为了解决这些问题,海外动…

GPT LoRA 大模型微调,生成猫耳娘

往期热门专栏回顾 专栏描述Java项目实战介绍Java组件安装、使用;手写框架等Aws服务器实战Aws Linux服务器上操作nginx、git、JDK、VueJava微服务实战Java 微服务实战,Spring Cloud Netflix套件、Spring Cloud Alibaba套件、Seata、gateway、shadingjdbc…

关于ida如何进行远程linux调试(详解)

首先我们需要安装工具软件VMware虚拟机和finalshell,并在虚拟机中安装centos 7系统,还要将finalshell连接到该系统中,具体操作可以去b站搜黑马Linux学习,学完该课程的p5,p6,p8即可,我接下来讲的…