搭建YOLOv10环境 训练+推理+模型评估

文章目录

  • 前言
  • 一、环境搭建
    • 必要环境
    • 1. 创建yolov10虚拟环境
    • 2. 下载pytorch (pytorch版本>=1.8)
    • 3. 下载YOLOv10源码
    • 4. 安装所需要的依赖包
  • 二、推理测试
    • 1. 将如下代码复制到ultralytics文件夹同级目录下并运行 即可得到推理结果
    • 2. 关键参数
  • 三、训练及评估
    • 1. 数据结构介绍
    • 2. 配置文件修改
    • 3. 训练/评估模型
    • 4. 关键参数
    • 5. 单独对训练好的模型将进行评估
  • 总结


前言

本文将详细介绍跑通YOLOv10的流程,并给各位提供用于训练、评估和模型推理的脚本

一、环境搭建

必要环境

本文使用Windows10+Python3.8+CUDA10.2+CUDNN8.0.4作为基础环境,使用30系或40系显卡的小伙伴请安装11.0以上版本的CUDA

1. 创建yolov10虚拟环境

conda create -n yolov10 python=3.8

2. 下载pytorch (pytorch版本>=1.8)

pip install torch==1.9.1+cu102 torchvision==0.10.1+cu102 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

若使用的是AMD显卡或不使用GPU的同学 可以通过以下命令可以安装CPU版本

pip install torch==1.9.1+cpu torchvision==0.10.1+cpu torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

3. 下载YOLOv10源码

地址:https://github.com/THU-MIG/yolov10

4. 安装所需要的依赖包

pip install -r requirements.txt

二、推理测试

1. 将如下代码复制到ultralytics文件夹同级目录下并运行 即可得到推理结果

import cv2
from ultralytics import YOLOv10
import os
import argparse
import time
import torchparser = argparse.ArgumentParser()
# 检测参数
parser.add_argument('--weights', default=r"yolov10n.pt", type=str, help='weights path')
parser.add_argument('--source', default=r"images", type=str, help='img or video(.mp4)path')
parser.add_argument('--save', default=r"./save", type=str, help='save img or video path')
parser.add_argument('--vis', default=True, action='store_true', help='visualize image')
parser.add_argument('--conf_thre', type=float, default=0.5, help='conf_thre')
parser.add_argument('--iou_thre', type=float, default=0.5, help='iou_thre')
opt = parser.parse_args()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')def get_color(idx):idx = idx * 3color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255)return colorclass Detector(object):def __init__(self, weight_path, conf_threshold=0.5, iou_threshold=0.5):self.device = deviceself.model = YOLOv10(weight_path)self.conf_threshold = conf_thresholdself.iou_threshold = iou_thresholdself.names = {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train',7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign',12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep',19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella',26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard',37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork',43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange',50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair',57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv',63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave',69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase',76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}def detect_image(self, img_bgr):results = self.model(img_bgr, verbose=True, conf=self.conf_threshold,iou=self.iou_threshold, device=self.device)bboxes_cls = results[0].boxes.clsbboxes_conf = results[0].boxes.confbboxes_xyxy = results[0].boxes.xyxy.cpu().numpy().astype('uint32')for idx in range(len(bboxes_cls)):box_cls = int(bboxes_cls[idx])bbox_xyxy = bboxes_xyxy[idx]bbox_label = self.names[box_cls]box_conf = f"{bboxes_conf[idx]:.2f}"xmax, ymax, xmin, ymin = bbox_xyxy[2], bbox_xyxy[3], bbox_xyxy[0], bbox_xyxy[1]img_bgr = cv2.rectangle(img_bgr, (xmin, ymin), (xmax, ymax), get_color(box_cls + 3), 2)cv2.putText(img_bgr, f'{str(bbox_label)}/{str(box_conf)}', (xmin, ymin - 10),cv2.FONT_HERSHEY_SIMPLEX, 0.5, get_color(box_cls + 3), 2)return img_bgr# Example usage
if __name__ == '__main__':model = Detector(weight_path=opt.weights, conf_threshold=opt.conf_thre, iou_threshold=opt.iou_thre)images_format = ['.png', '.jpg', '.jpeg', '.JPG', '.PNG', '.JPEG']video_format = ['mov', 'MOV', 'mp4', 'MP4']if os.path.join(opt.source).split(".")[-1] not in video_format:image_names = [name for name in os.listdir(opt.source) for item in images_format ifos.path.splitext(name)[1] == item]for img_name in image_names:img_path = os.path.join(opt.source, img_name)img_ori = cv2.imread(img_path)img_vis = model.detect_image(img_ori)img_vis = cv2.resize(img_vis, None, fx=1.0, fy=1.0, interpolation=cv2.INTER_NEAREST)cv2.imwrite(os.path.join(opt.save, img_name), img_vis)if opt.vis:cv2.imshow(img_name, img_vis)cv2.waitKey(0)cv2.destroyAllWindows()else:capture = cv2.VideoCapture(opt.source)fps = capture.get(cv2.CAP_PROP_FPS)size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')outVideo = cv2.VideoWriter(os.path.join(opt.save, os.path.basename(opt.source).split('.')[-2] + "_out.mp4"),fourcc,fps, size)while True:ret, frame = capture.read()if not ret:breakstart_frame_time = time.perf_counter()img_vis = model.detect_image(frame)# 结束计时end_frame_time = time.perf_counter()  # 使用perf_counter进行时间记录# 计算每帧处理的FPSelapsed_time = end_frame_time - start_frame_timeif elapsed_time == 0:fps_estimation = 0.0else:fps_estimation = 1 / elapsed_timeh, w, c = img_vis.shapecv2.putText(img_vis, f"FPS: {fps_estimation:.2f}", (10, 35), cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 0, 255), 2)outVideo.write(img_vis)cv2.imshow('detect', img_vis)cv2.waitKey(1)capture.release()outVideo.release()

2. 关键参数

1. 测试图片:–source 变量后填写图像文件夹路径 如:default=r"images"
2. 测试视频:–source 变量后填写视频路径 如:default=r"video.mp4"

推理图像效果:
在这里插入图片描述

推理视频效果:在这里插入图片描述

三、训练及评估

1. 数据结构介绍

这里使用的数据集是VOC2007,用留出法将数据按9:1的比例划分成了训练集和验证集
在这里插入图片描述
下载地址如下:
链接:https://pan.baidu.com/s/1FmbShVF1SQOZfjncj3OKJA?pwd=i7od
提取码:i7od

2. 配置文件修改

在这里插入图片描述

3. 训练/评估模型

将如下代码复制到ultralytics文件夹同级目录下并运行 即可开始训练

# -*- coding:utf-8 -*-
from ultralytics import YOLOv10
import argparse# 解析命令行参数
parser = argparse.ArgumentParser(description='Train or validate YOLO model.')
# train用于训练原始模型  val 用于得到精度指标
parser.add_argument('--mode', type=str, default='train', help='Mode of operation.')
# 预训练模型
parser.add_argument('--weights', type=str, default='yolov10n.pt', help='Path to model file.')
# 数据集存放路径
parser.add_argument('--data', type=str, default='VOC2007/data.yaml', help='Path to data file.')
parser.add_argument('--epoch', type=int, default=200, help='Number of epochs.')
parser.add_argument('--batch', type=int, default=8, help='Batch size.')
parser.add_argument('--workers', type=int, default=0, help='Number of workers.')
parser.add_argument('--device', type=str, default='0', help='Device to use.')
parser.add_argument('--name', type=str, default='', help='Name data file.')
args = parser.parse_args()def train(model, data, epoch, batch, workers, device, name):model.train(data=data, epochs=epoch, batch=batch, workers=workers, device=device, name=name)def validate(model, data, batch, workers, device, name):model.val(data=data, batch=batch, workers=workers, device=device, name=name)def main():model = YOLOv10(args.weights)if args.mode == 'train':train(model, args.data, args.epoch, args.batch, args.workers, args.device, args.name)else:validate(model, args.data, args.batch, args.workers, args.device, args.name)if __name__ == '__main__':main()

4. 关键参数

1. 模式选择:
–mode train: 开始训练模型
–mode val: 进行模型验证

2. 训练轮数: 通过 --epoch 参数设置训练轮数,默认为200轮。该参数控制模型在训练集上迭代的次数,增加轮数有助于提升模型性能,但同时也会增加训练时间。

3. 训练批次: 通过 --batch 参数设置训练批次大小,一般设置为2的倍数,如8或16。批次大小决定了每次参数更新时使用的样本数量,较大的批次有助于加速收敛,但会增加显存占用,需根据实际显存大小进行调整

4. 训练数据加载进程数: 通过 --workers 参数设置数据加载进程数,默认为8。该参数控制了在训练期间用于加载和预处理数据的进程数量。增加进程数可以加快数据的加载速度,linux系统下一般设置为8或16,windows系统设置为0。

训练过程:在这里插入图片描述
训练结束后模型已经训练过程默认会保存到runs/detect/exp路径下

5. 单独对训练好的模型将进行评估

1. 将 --mode变量后改为val 如:default=“val”
2. 将 --weights变量后改为要单独评估的模型路径 如:default=r"runs/detect/exp/weights/best.pt"

评估过程:
在这里插入图片描述


总结

yolo是真卷呐,版本号一会儿一变的,v9还没看呢v10已经出来了…

最近经常在b站上更新一些有关目标检测的视频,大家感兴趣可以来看看 https://b23.tv/1upjbcG

学习交流群:995760755


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/844584.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kotlin基础之泛型和委托

Kotlin泛型的概念及使用 泛型概念 在Kotlin中,泛型(Generics)是一种允许在类、接口和方法中使用类型参数的技术。这些类型参数在实例化类、实现接口或调用方法时会被具体的类型所替代。泛型的主要目的是提高代码的复用性、类型安全性和可读…

oracle翻页查询的小坑记录

oracle的查询,因为能获取到查询结果的rownum,就想着直接在查询条件后面做翻页,而且首页确实是正常查询到了。后面才发现翻页是空的。。。 这是因为rownum排序是在查询结果才分配的。所以应该把查询结果作为子查询,在外查询应用排序…

【深度好文】AI企业融合联盟营销,做的好就是最大赢家!

AI工具市场正在迅速发展,现仍有不少企业陆续涌出,那么如何让你的工具受到目标群体的关注呢?这相比是AI工具营销人员一直在思考的问题。 即使这个市场正蓬勃发展,也无法保证营销就能轻易成功。AI工具虽然被越来越多人认可和接受&a…

Windows配置java环境JDK

配置jdk环境非常简单,大概有以下几步: 下载jdk安装,然后双击进行安装配置环境变量(也不是一定非要配置环境变量,配置环境变量的好处就是,在任何位置,系统都可以找到安装路径,非常实用且方便) …

短信平台-平台群发短信

时代的进步带来了我们生活的便利,而其中最受欢迎和广泛应用的方式之一就是通过短信传递信息。在这个飞速发展的数字时代,我们需要一个高效、可靠的短信平台来满足不断增长的通讯需求。而今天,我要向大家推荐的正是这样一款卓越的短信平台——…

连接远程的kafka【linux】

# 连接远程的kafka【linux】 前言版权推荐连接远程的kafka【linux】一、开放防火墙端口二、本地测试是否能访问端口三、远程kafka配置四、开启远程kakfa五、本地测试能否连接远程六、SpringBoot测试连接 遇到的问题最后 前言 2024-5-14 18:45:48 以下内容源自《【linux】》 仅…

封装和解构是 Python 中常用的技术

目录 前言 一、封装(Packing): 二、解构(Unpacking): 2.1 解构元组或列表: 2.2 解构字典: 2.3 使用*进行解构: 2.4 解构函数返回值 总结 前言 提示:这…

Oracle体系结构初探:RMAN基本配置参数

目录 查看RMAN基本配置 修改RMAN配置参数 基本配置参数说明 查看RMAN基本配置 进入RMAN命令行 rman target / -- “/” 就代表了sysdba权限 查看参数命令 show all; RMAN> show all; RMAN configuration parameters for database with db_unique_name ORCL are:…

leetcode-189. 旋转数组 原地递归算法(非官方的三种方法)

Problem: 189. 轮转数组 思路 首先&#xff0c;很明显&#xff0c;题目要求的操作等同于将数组的后k%n个元素移动到前面来。 然后我们思考原地操作的方法&#xff1a; &#xff08;为了方便讲解&#xff0c;我们先假设k<n/2&#xff09; 1.我们将数组划分为 [A&#xff0c;B…

7. CSS 网格布局

CSS3引入了强大的网格布局&#xff08;Grid Layout&#xff09;&#xff0c;它提供了一种二维的布局方式&#xff0c;使得创建复杂的网页布局变得更加简单和直观。通过定义行和列&#xff0c;我们可以精确控制网页元素的排列和对齐。本章将详细介绍网格布局的基本概念和属性&am…

pytorch学习day1

一.pytorch主要模块介绍 1.1 模块介绍 模块描述torch包含激活函数和主要的张量操作torch.Tensor定义了张量的数据类型&#xff0c;方法可返回新张量&#xff0c;方法后缀带下划线可修改张量本身torch.cuda定义了 CUDA 运算相关的函数&#xff0c;如检查 CUDA 是否可用&#x…

橙派探险记:开箱香橙派 AIpro 与 疲劳驾驶检测的奇幻之旅

橙派探险记&#xff1a;开箱香橙派 AIpro 与 疲劳驾驶检测的奇幻之旅 引子&#xff1a;神秘包裹的到来 在很久很久以前......在一个阳光明媚的下午&#xff0c;我终于收到了期待已久的包裹——香橙派 AIpro。这份礼物辗转两次才到我的手上&#xff0c;每一天我都怀着满心的期待…

JetLinks物联网平台在windows 7搭建(前后端)部署教程

近期对接TCP、modbusTCP等自定义解析&#xff0c;做了很多万能解析的方法&#xff0c;却都不遂人意&#xff0c;而一直在用的ThingsBoard不能直接对接TCP透传(企业版除外)&#xff0c;需要在外围做一些自定义解析&#xff0c;然后转json再mqtt上传&#xff0c;感觉来说比较麻烦…

RTKLIB学习--前向滤波

#前言 如果要详细了解RTKLIB或进行二次开发&#xff0c;了解obs指针所存储每个历元的卫星观测数据是必不可少的环节&#xff0c;此文对RTKLIB的&#xff08;由于后处理和实时运行都要用到前向滤波&#xff09;前向滤波&#xff08;从文件头读取观测数据到obs结构体中&#xff0…

Android笔记--应用安装

这一节了解一下普通应用安装app的方式&#xff0c;主要是唤起系统来安装&#xff0c;直接上代码: 申请权限 <uses-permission android:name"android.permission.READ_EXTERNAL_STORAGE"/><uses-permission android:name"android.permission.WRITE_EXT…

【包装类简单认识泛型】

目录 1&#xff0c;包装类 1.1 基本数据类型和对应的包装类 1.2 装箱和拆箱 2&#xff0c;什么是泛型 3&#xff0c;引出泛型 3.1 语法 4&#xff0c;泛型如何编译的 4.1 擦除机制 4.2 为什么不能实例化泛型类型数组 5&#xff0c;泛型的上界 5.1 语法 5.2 复杂示例…

Windows内核函数 - 添加、修改注册表键值

打开注册表的句柄后&#xff0c;就可以对该项进行设置和修改了。注册表是以二元形式存储的&#xff0c;即“键名”和“键值”。通过键名设置键值&#xff0c;而键值可以划分几个类&#xff0c;如下表所示。 表1 键值的分类 在添加和修改注册表键值的时候&#xff0c;要分类进行…

dp秒杀优惠券

1、全局id生成器 当用户抢购时&#xff0c;就会生成订单并保存到tb_voucher_order这张表中&#xff0c;而订单表如果使用数据库自增ID就存在一些问题&#xff1a; id的规律性太明显受单表数据量的限制 场景分析&#xff1a;如果我们的id具有太明显的规则&#xff0c;用户或者…

前端实时更新数据的几种方式

实时更新数据的几种方式 背景 在我们的日常工作中,我们往往会遇到客户端需要实时获取服务端最新数据的场景,例如聊天系统(WeChat/Telegram),股票行情查看软件(同花顺/富途),feed 推送系统(Twitter/微博)等等。在实现这些需求的时候,我们的技术方案是有很多的,本文将会给…

C++修改文件后缀名;链表循环删除乘积为10的元素

1. 文件名修改 在一个文件目录下&#xff0c;存在相同扩展名 ".stp"的多个文件&#xff0c;对这样的文件名&#xff0c;请修改文件名称&#xff0c;在文件 名称后增加排序标识 "-01" &#xff0c; "-02" &#xff0c; "-03"... #incl…