Cat, Fox and Double Maximum
题目描述
Fox loves permutations! She came up with the following problem and asked Cat to solve it:
You are given an even positive integer n n n and a permutation † ^\dagger † p p p of length n n n.
The score of another permutation q q q of length n n n is the number of local maximums in the array a a a of length n n n, where a i = p i + q i a_i = p_i + q_i ai=pi+qi for all i i i ( 1 ≤ i ≤ n 1 \le i \le n 1≤i≤n). In other words, the score of q q q is the number of i i i such that 1 < i < n 1 < i < n 1<i<n (note the strict inequalities), a i − 1 < a i a_{i-1} < a_i ai−1<ai, and a i > a i + 1 a_i > a_{i+1} ai>ai+1 (once again, note the strict inequalities).
Find the permutation q q q that achieves the maximum score for given n n n and p p p. If there exist multiple such permutations, you can pick any of them.
† ^\dagger † A permutation of length n n n is an array consisting of n n n distinct integers from 1 1 1 to n n n in arbitrary order. For example, [ 2 , 3 , 1 , 5 , 4 ] [2,3,1,5,4] [2,3,1,5,4] is a permutation, but [ 1 , 2 , 2 ] [1,2,2] [1,2,2] is not a permutation ( 2 2 2 appears twice in the array), and [ 1 , 3 , 4 ] [1,3,4] [1,3,4] is also not a permutation ( n = 3 n=3 n=3 but there is 4 4 4 in the array).
输入描述
The first line of input contains an integer t t t ( 1 ≤ t ≤ 1 0 4 1 \leq t \leq 10^4 1≤t≤104) — the number of test cases in the input you will have to solve.
The first line of each test case contains one even integer n n n ( 4 ≤ n ≤ 1 0 5 4 \leq n \leq 10^5 4≤n≤105, n n n is even) — the length of the permutation p p p.
The second line of each test case contains the n n n integers p 1 , p 2 , … , p n p_1, p_2, \ldots, p_n p1,p2,…,pn ( 1 ≤ p i ≤ n 1 \leq p_i \leq n 1≤pi≤n). It is guaranteed that p p p is a permutation of length n n n.
It is guaranteed that the sum of n n n across all test cases doesn’t exceed 1 0 5 10^5 105.
输出描述
For each test case, output one line containing any permutation of length n n n (the array q q q), such that q q q maximizes the score under the given constraints.
样例输入 #1
4
4
1 2 3 4
4
4 3 1 2
6
6 5 1 4 2 3
8
1 2 4 5 7 6 8 3
样例输出 #1
2 4 1 3
3 1 4 2
2 5 1 4 3 6
5 4 8 2 7 1 6 3
原题
CF——传送门
洛谷——传送门
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;int main()
{ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);int t;cin >> t;while (t--){int n;cin >> n;vector<int> p(n);for (int i = 0; i < n; i++){cin >> p[i];}int n_pos = find(p.begin(), p.end(), n) - p.begin();vector<int> q(n);// 注意,由于我从下标0开始读入数据,所以在下面的描述中,0,2,4,6……是奇数位,而1,3,5,7……是偶数位if (n_pos & 1) // 如果值n在偶数位上,则将p排列翻转,使其变为奇数位上{reverse(p.begin(), p.end());}// n在偶数位和n在奇数位的情况最终都转化为n在奇数位的处理vector<pair<int, int>> even, odd; // 记录值和位置的数组// 先处理偶数位,偶数位需得到1~n/2,小的值交给大的for (int i = 1; i < n; i += 2){even.push_back({p[i], i});}sort(even.begin(), even.end(), greater<pair<int, int>>());// 按小值交给大值的顺序赋值1~n/2for (int i = 0; i < n / 2; i++){q[even[i].second] = i + 1;}// 再处理奇数位,奇数位的第一位得到n/2+1,剩余位得到n/2+2~n,大的值交给小的for (int i = 0; i < n; i += 2){odd.push_back({p[i], i});}sort(odd.begin() + 1, odd.end(), greater<pair<int, int>>());// 按大值交给小值的顺序赋值n/2+1~nfor (int i = 0; i < n / 2; i++){q[odd[i].second] = i + n / 2 + 1;}// 若之前翻转过p,则再翻转一次结果q就能得到所需答案if (n_pos & 1){reverse(q.begin(), q.end());}for (int i = 0; i < n; i++){cout << q[i] << " \n"[i == n - 1]; // 新学到的小寄巧()}}return 0;
}