redis基本数据结构与应用

文章目录

    • 概要
    • String结构
    • Hash结构
    • List结构
    • Set结构
    • Zset结构
    • bitmap位图类型
    • geo地理位置类型
    • 其他常用命令

概要

在这里插入图片描述
redis常用的5种不同数据结构类型之间的映射如下:

结构类型结构存储的值结构的读写能力
STRING可以是字符串、整数或者浮点数key-value形式;对整数和浮点数执行自增或者自减操作
LIST一个链表,链表上的节点都包含了字符串链表两端插入或者弹出;对链表进行修建;读取单个或者多个元素;根据值查找或者删除
SET元素不重复、无序的 collection添加、获取、删除单个元素;检查元素是否存在;计算交集、并集、差集;从集合中随机取
HASHHASH 包含字符串的无序散列表添加、获取、移除单个键值对;获取所有键值对
ZSET(有序集合)字符串成员与浮点数分值之间的有序映射,元素的排列顺序由分值决定添加、获取、删除单个元素;根据分值范围(range)或者成员来获取元素

String结构

常用命令

SET	    SET  key value  	        存入字符串键值对
MSET	MSET key value [key value]	批量存储字符串键值对
SETNX	SETNX key value	            存入不存在的字符串键值对,存在返回false,不存在返回trueGET 	GET key						获取一个字符串键值
MGET 	MGET key [key] 				批量获取字符串键值
DEL 	key [key]					删除一个键
EXPIPE 	key seconds					设置一个键的过期时间()

原子加减

INCR key 							将key中存储的值加1
DECR key							将key中存储的值减1
INCRBY key  increment				将key中存储的值增加increment
DECRBY key  decrement  				将key中存储的值减少increment

应用场景举例:

  1. 如需要往redis中存储一个对象(数据库中的对象,也就是表中一行数据)

有两种方式:

# 方式一
SET user:1 value(json格式数据) # 将每一行数据json后 再进行存储 其中1表示这条数据的id# 方式二
MSET user:1:name alai user:1:balance 1888 # 使用批量设值的方式MGET user:1:name user:1:balance
  1. 计数器
    比如,文章的阅读量
    在这里插入图片描述
INCR article:readcount:{文章id}
GET article:readcount:{文章id}
  1. 分布式id
INCRBY  orderId  1000		//redis批量生成序列号提升性能  先批量生成  存储在本地服务器

Hash结构

常用命令

HSET  	HSET  key  field  value 				 //存储一个哈希表key的键值
HSETNX  HSETNX key  field  value 		  		 //存储一个不存在的哈希表key的键值
HMSET  	HMSET key  field  value [field value ...]//在一个哈希表key中存储多个键值对
HGET    HGET key  field 						 //获取哈希表key对应的field键值
HMGET  		HMGET key  field  [field ...] 		 //批量获取哈希表key中多个field键值
HDEL  		HDEL key  field  [field ...] 		 //删除哈希表key中的field键值
HLEN  		HLEN key							 //返回哈希表key中field的数量
HGETALL   HGETALLkey						     //返回哈希表key中所有的键值

原子操作

HINCRBY  HINCRBY key  field  increment 		//为哈希表key中field键的值加上增量increment

应用场景

  1. 存储对象:
HMSET  user  {userId}:name  alai {userId}:balance  1888
HMSET  user  1:name  zhuge 1:balance  1888
HMGET  user  1:name  1:balance

在这里插入图片描述

  1. 购物车
    用redis维护用户的购物车信息,可以进行如下设值
    ● 以用户id为key
    ● 商品id为field
    ● 商品数量为value
# 添加商品
hset car:1001 10088 1 # 其中1001为用户id  10088为商品id  1为要添加的商品数量
# 商品数量增加
hincrby cart:1001 10088 1
# 查询商品总数
hlen car:1001
# 删除商品
hdel car:1001 10088
# 获取购物车中所有的商品
hgetall cart:1001

优点:

  • 同类数据归类整合
  • 相比string操作消耗内存与cpu更小
  • 相比string储存更节省空间

缺点:

  • 过期功能不能使用在field上,只能用在key上
  • Redis集群架构下不适合大规模使用(数据很多的情况下,hash存储可能出现数据量偏移)

List结构

LPUSH key value [value ...] //将一个或多个值value插入到key列表的表头(最左边)
RPUSH key value [value ...]	//将一个或多个值value插入到key列表的表尾(最右边)
LPOP  key					//移除并返回key列表的头元素
RPOP  key					//移除并返回key列表的尾元素
LRANGE key start stop		//返回列表key中指定区间内的元素,区间以偏移量start和stop指定
BLPOP key [key ...] timeout	//从key列表表头弹出一个元素,若列表中没有元素,阻塞等待
BRPOP key [key ...] timeout //从key列表表尾弹出一个元素,若列表中没有元素,阻塞等timeout秒

在这里插入图片描述

应用场景

  1. 微博和公众号的消息推送
    在这里插入图片描述
    在这里插入图片描述
# MacTalk发微博,消息ID10086
LPUSH  msg:{关注人-ID}  10086# 查看最新5条发送信息
LRANGE  msg:{关注人-ID}  0  5

Set结构

常用命令

SADD key member [member ...]	//往集合key中存入元素,元素存在则忽略,若key不存在则新增
SREM key member [member ...]	//从集合key中删除元素
SMEMBERS key					//获取集合key中所有元素
SCARD  key						//获取集合key的元素个数
SISMEMBER key member			//判断member元素是否存在于集合key中
SRANDMEMBER key [count]			//从集合key中随机选出count个元素,元素不从key中删除
SPOP key [count]				//从集合key中随机选出count个元素,元素从key中删除

运算操作

SINTER key [key ...] 					//交集运算
SINTERSTORE destination  key  [key ..]	//将交集结果存入新集合destination中
SUNION key [key ..] 					//并集运算
SUNIONSTORE destination key [key ...]   //将并集结果存入新集合destination中
SDIFF  key  [key ...] 					//差集运算
SDIFFSTORE  destination  key  [key ...]	//将差集结果存入新集合destination中

应用场景

  1. 微信抽奖小程序
    在这里插入图片描述
# 点击参与抽奖加入集合
SADD key {userlD}
# 查看参与抽奖所有用户
SMEMBERS key	  
# 抽取count名中奖者(不移除集合中元素)
SRANDMEMBER key [count]
# 抽取count名中奖者(移除集合中的元素)
SPOP key [count]
  1. 点赞、收藏、标签场景

在这里插入图片描述

# 点赞
SADD  like:{消息ID}  {用户ID}
# 取消点赞
SREM like:{消息ID}  {用户ID}
# 检查用户是否点赞过
SISMEMBER  like:{消息ID}  {用户ID}
# 获取点赞的用户列表
SMEMBERS like:{消息ID}
# 获取点赞用户数 
SCARD like:{消息ID}

集合操作
在这里插入图片描述

# 三个集合的交集
SINTER set1 set2 set3 -> { c }
# 三个集合的并集
SUNION set1 set2 set3 -> { a,b,c,d,e }
# 以第1个集合为基准 跟其他集合不相同的元素
SDIFF set1 set2 set3 -> { a }
  1. 集合操作实现微博微信关注模型
    在这里插入图片描述
# 张三关注的人
zhangsanSet ->{lisi,wangwu,cuihua}
# 李四关注的人
lisiSet -> {zhangsan,cuihua,wangwu,xiaohong}
# 小红关注的人
xiaohongSet -> {zhangsan,lisi,wangwu,heimazi}
# 张三和李四共同关注的人
SINTER zhangsanSet lisiSet ->{cuihua,wangwu}
# 张三到李四的主页 看到  “我关注的人也关注他(李四)” :
SISMEMBER wangwuSet lisi
SISMEMBER cuihuaSet lisi
# 我可能认识的人 (在张三访问了李四主页后的展示)
SDIFF lisiSet zhangsanSet ->{cuihua,xiaohong}

Zset结构

常用命令

ZADD key score member [[score member]]		//往有序集合key中加入带分值元素
ZREM key member [member …]					//从有序集合key中删除元素
ZSCORE key member 							//返回有序集合key中元素member的分值
ZINCRBY key increment member		//为有序集合key中元素member的分值加上increment 
ZCARD key							//返回有序集合key中元素个数
ZRANGE key start stop [WITHSCORES]	//正序获取有序集合key从start下标到stop下标的元素
ZREVRANGE key start stop [WITHSCORES]//倒序获取有序集合key从start下标到stop下标的元素

在这里插入图片描述
集合操作

ZUNIONSTORE destkey numkeys key [key ...] 	//并集计算
ZINTERSTORE destkey numkeys key [key …]			//交集计算

应用场景

# 点击新闻
ZINCRBY  hotNews:20190819  1 
# 展示当日排行前十
ZREVRANGE  hotNews:20190819  0  10  WITHSCORES 
# 七日搜索榜单计算
ZUNIONSTORE  hotNews:20190813-20190819  7 
hotNews:20190813  hotNews:20190814... hotNews:20190819
# 展示七日排行前十
ZREVRANGE hotNews:20190813-20190819  0  10  WITHSCORES

bitmap位图类型

bitmap 存储的是连续的二进制数字(0 和 1),通过 bitmap, 只需要一个 bit 位来表示某
个元素对应的值或者状态,key 就是对应元素本身 。我们知道 8 个 bit 可以组成一个 byte,所以 bitmap 本身会极大的节省储存空间。

在这里插入图片描述

常用命令:setbit 、 getbit 、 bitcount 、 bitop

应用场景

适合需要保存状态信息(比如是否签到、是否登录…)并需要进一步对这些信息进行分析的场景。比如用户签到情况、活跃用户情况、用户行为统计(比如是否点赞过某个视频)。

# SETBIT 会返回之前位的值(默认是 0)这里会生成 7 个位
127.0.0.1:6379> setbit mykey 7 1
(integer) 0
127.0.0.1:6379> setbit mykey 7 0
(integer) 1
127.0.0.1:6379> getbit mykey 7
(integer) 0
127.0.0.1:6379> setbit mykey 6 1
(integer) 0
127.0.0.1:6379> setbit mykey 8 1
(integer) 0
# 通过 bitcount 统计被被设置为 1 的位的数量。
127.0.0.1:6379> bitcount mykey

使用场景一:用户行为分析 很多网站为了分析你的喜好,需要研究你点赞过的内容。

# 记录你喜欢过 001 号小姐姐
127.0.0.1:6379> setbit beauty_girl_001 uid 1

使用场景二:统计活跃用户

面试题:现在系统有亿级的活跃用户,为了增强用户粘性,该如何实现签到、日活统计

使用时间作为 key,然后用户 ID 为 offset,如果当日活跃过就设置为 1
那么该如果计算某几天/月/年的活跃用户呢(暂且约定,统计时间内只有有一天在线就称为活跃),这是就用到了BITOP命令

对一个或多个保存二进制位的字符串 key 进行位元操作,并将结果保存到 destkey 上。
# BITOP 命令支持 AND 、 OR 、 NOT 、 XOR 这四种操作中的任意一种参数
BITOP operation destkey key [key ...]

初始化数据

127.0.0.1:6379> setbit 20210308 1 1
(integer) 0
127.0.0.1:6379> setbit 20210308 2 1
(integer) 0
127.0.0.1:6379> setbit 20210309 1 1
(integer) 0

统计 20210308~20210309 总活跃用户数: 1

127.0.0.1:6379> bitop and desk1 20210308 20210309
(integer) 1
127.0.0.1:6379> bitcount desk1
(integer) 1

统计 20210308~20210309 在线活跃用户数: 2

127.0.0.1:6379> bitop or desk2 20210308 20210309
(integer) 1
127.0.0.1:6379> bitcount desk2
(integer) 2

geo地理位置类型

Redis 3.2 中增加了对GEO类型的支持。GEO,Geographic,地理信息的缩写。该类型,就是元素的2维
坐标,在地图上就是经纬度。redis基于该类型,提供了经纬度设置,查询,范围查询,距离查询,经纬
度Hash等常见操作
应用场景:附近的人、摇一摇、附近的车、附近银行站点查询

GEO常用命令
Tips:
在学习geo命令时会使用到经纬度坐标信息,可以在百度地图的拾取坐标系统中获取测试坐标信息,网址:http://api.map.baidu.com/lbsapi/getpoint/index.html

geoadd命令

为了进行地理位置相关操作, 我们首先需要将具体的地理位置记录起来, 这一点可以通过执行 geoadd
命令来完成, 该命令的基本格式如下:

GEOADD location-set longitude latitude name [longitude latitude name ...]

此命令用于添加位置信息到集合中
以下代码展示了如何通过 GEOADD 命令, 将武汉、襄阳、宜昌、枝江、咸宁等数个湖北省的市添加到位置集合 hubeiCities 集合里面

geoadd hubeiCities 114.32538 30.534535 wuhan
geoadd hubeiCities 112.161882 32.064505 xiangyang 111.305197 30.708127 yichang
111.583717 30.463363 zhijiang 114.295174 29.885892 xianning

getpos命令

此命令用于根据输入的位置名称获取位置的坐标信息,基本语法如下

GEOPOS location-set name [name ...]
geopos hubeiCities xiangyang
--结果如下【1为经度 2为纬度】
1) "112.16188341379165649"
2) "32.06450528704699821"
geopos hubeiCities xiangyang wuhan
--襄阳的经纬度
1) 1) "112.16188341379165649"2) "32.06450528704699821"
--武汉的经纬度
2) 1) "114.32538002729415894"2) "30.53453492166421057"

geodist命令

此命令用于计算两个位置之间的距离,基本语法如下

GEODIST location-set location-x location-y [unit]

可选参数 unit 用于指定计算距离时的单位, 它的值可以是以下单位的其中一个:
m 表示单位为米。
km 表示单位为千米。
mi 表示单位为英里。
ft 表示单位为英尺。

案例:分别以默认距离单位和指定距离单位计算襄阳和武汉的距离

--不指定距离单位
127.0.0.1:6381> geodist hubeiCities xiangyang wuhan
"266889.7642"
--指定距离单位km
127.0.0.1:6381> geodist hubeiCities xiangyang wuhan km
"266.8898"

georadius命令和georadiusbymember命令

这两个命令都可以用于获取指定范围内的元素,也即查找特定范围之内的其他存在的地点。

比如找出地点A范围200米之内的所有地点,找出地点B范围50公里之内的所有地点等等。

这两个命令的作用一样, 只是指定中心点的方式不同: georadius 使用用户给定的经纬度作为计算范围时的中心点, 而 georadiusbymember 则使用储存在位置集合里面的某个地点作为中心点。

以下是这两个命令的基本语法

GEORADIUS location-set longitude latitude radius m|km|ft|mi [WITHCOORD]
[WITHDIST] [ASC|DESC] [COUNT count]
GEORADIUSBYMEMBER location-set location radius m|km|ft|mi [WITHCOORD] [WITHDIST]
[ASC|DESC] [COUNT count]

这两个命令的各个参数的意义如下:
m|km|ft|mi 指定的是计算范围时的单位;
如果给定了WITHCOORD,那么在返回匹配的位置时会将位置的经纬度一并返回;
如果给定了WITHDIST , 那么在返回匹配的位置时会将位置与中心点之间的距离一并返回;
在默认情况下, GEORADIUSGEORADIUSBYMEMBER 的结果是未排序的, ASC 可以让查找结果根据距离从近到远排序, 而 DESC 则可以让查找结果根据从远到近排序;

COUNT参数用于指定要返回的结果数量。
下面通过案例分别演示georadius命令和georadiusbymember命令

GEORADIUS案例:
hubeiCities位置集合中查找距离经纬度为112.927076 28.235653(长沙)500km以内的位置信息,
查找结果中应包含不超过5个位置的坐标信息,距离信息,并按距离由近到远排序。

127.0.0.1:6381> georadius hubeiCities 112.927076 28.235653 500 km withcoord
withdist asc count 5
-- 咸宁 距离目标位置226.67公里
1) 1) "xianning"2) "226.6716"3) 1) "114.29517298936843872"2) "29.88589217282589772"
-- 枝江 距离目标位置279.91公里
2) 1) "zhijiang"2) "279.9154"3) 1) "111.58371716737747192"2) "30.46336248623112652"
-- 武汉 距离目标位置289.38公里
3) 1) "wuhan"2) "289.3798"3) 1) "114.32538002729415894"2) "30.53453492166421057"
-- 宜昌 距离目标位置316.68公里
4) 1) "yichang"2) "316.6777"3) 1) "111.30519658327102661"2) "30.70812783498269738"
-- 襄阳 距离目标位置432.18公里
5) 1) "xiangyang"2) "432.1767"3) 1) "112.16188341379165649"2) "32.06450528704699821"

GEORADIUSBYMEMBER案例:
在hubeiCities位置集合中查找距离襄阳200km以内的位置信息【这里指定的目标位置只能是hubeiCities中存在的位置,而不能指定位置坐标】,查找结果中应包含不超过2个位置的坐标信息,距离信息,并按距离由远到近排序。
查询代码如下:

127.0.0.1:6381> georadiusbymember hubeiCities xiangyang 200 km withcoord
withdist desc count 2
-- 枝江 距襄阳186.38km
1) 1) "zhijiang"2) "186.3784"3) 1) "111.58371716737747192"2) "30.46336248623112652"
-- 宜昌 距襄阳171.40km
2) 1) "yichang"2) "171.3950"3) 1) "111.30519658327102661"2) "30.70812783498269738"

其他常用命令

help
查看命令得查考文档


127.0.0.1:6379> help setSET key value [EX seconds|PX milliseconds|EXAT timestamp|PXAT milliseconds-timestamp|KEEPTTL] [NX|XX] [GET]summary: Set the string value of a keysince: 1.0.0group: string127.0.0.1:6379> help @setSADD key member [member ...]summary: Add one or more members to a setsince: 1.0.0SCARD keysummary: Get the number of members in a setsince: 1.0.0SDIFF key [key ...]summary: Subtract multiple setssince: 1.0.0SDIFFSTORE destination key [key ...]summary: Subtract multiple sets and store the resulting set in a keysince: 1.0.0SINTER key [key ...]summary: Intersect multiple setssince: 1.0.0SINTERSTORE destination key [key ...]summary: Intersect multiple sets and store the resulting set in a keysince: 1.0.0SISMEMBER key membersummary: Determine if a given value is a member of a setsince: 1.0.0SMEMBERS keysummary: Get all the members in a setsince: 1.0.0SMISMEMBER key member [member ...]summary: Returns the membership associated with the given elements for a setsince: 6.2.0SMOVE source destination membersummary: Move a member from one set to anothersince: 1.0.0SPOP key [count]summary: Remove and return one or multiple random members from a setsince: 1.0.0SRANDMEMBER key [count]summary: Get one or multiple random members from a setsince: 1.0.0SREM key member [member ...]summary: Remove one or more members from a setsince: 1.0.0SSCAN key cursor [MATCH pattern] [COUNT count]summary: Incrementally iterate Set elementssince: 2.8.0SUNION key [key ...]summary: Add multiple setssince: 1.0.0SUNIONSTORE destination key [key ...]summary: Add multiple sets and store the resulting set in a keysince: 1.0.0

scan

SCAN cursor [MATCH pattern] [COUNT count]

scan 参数提供了三个参数,第一个是 cursor 整数值(hash桶的索引值),第二个是 key 的正则模式,第三个是一次遍历的key的数量(参考值,底层遍历的数量不一定),并不是符合条件的结果数量。第一次遍历时,cursor 值为0,然后将返回结果中第一个整数值作为下一次遍历的 cursor。一直遍历到返回的 cursor 值为 0 时结束。

如果在scan的过程中如果有键的变化(增加、 删除、 修改) ,那么遍历效果可能会碰到如下问题: 新增的键可能没有遍历到, 遍历出了重复的键等情况, 也就是说scan并不能保证完整的遍历出来所有的键, 这些是我们在开发时需要考虑的。

127.0.0.1:6379> help scanSCAN cursor [MATCH pattern] [COUNT count] [TYPE type]summary: Incrementally iterate the keys spacesince: 2.8.0group: generic127.0.0.1:6379> scan 0 match name*
1) "0"
2) 1) "name"2) "name5"3) "name3"4) "name7"5) "name9"6) "name8"7) "name6"8) "name4"9) "name2"

info
查看redis服务运行信息,分为 9 大块,每个块都有非常多的参数,这 9 个块分别是:

Server 服务器运行的环境参数
Clients 客户端相关信息
Memory 服务器运行内存统计数据
Persistence 持久化信息
Stats 通用统计数据
Replication 主从复制相关信息
CPU CPU 使用情况
Cluster 集群信息
KeySpace 键值对统计数量信息
127.0.0.1:6379> help infoINFO [section]summary: Get information and statistics about the serversince: 1.0.0group: server127.0.0.1:6379> info
# Server
redis_version:6.2.6
redis_git_sha1:00000000
redis_git_dirty:0
redis_build_id:366abd42dd8e835e
redis_mode:standalone
os:Linux 3.10.0-1160.11.1.el7.x86_64 x86_64
arch_bits:64
multiplexing_api:epoll
atomicvar_api:atomic-builtin
gcc_version:4.8.5
process_id:11383
process_supervised:no
run_id:b0cd72bf94e42a7b4c3060b2ac1d9dbdaeb5f0a1
tcp_port:6379
server_time_usec:1639613720733391
uptime_in_seconds:259211
uptime_in_days:3
hz:10
configured_hz:10
lru_clock:12223768
executable:/usr/local/developer/redis/single_redis/redis-6.2.6/src/redis-server
config_file:/usr/local/developer/redis/single_redis/redis-6.2.6/redis.conf
io_threads_active:0# Memory
used_memory:874784
used_memory_human:854.28K
used_memory_rss:9609216
used_memory_rss_human:9.16M
used_memory_peak:3928792
used_memory_peak_human:3.75M
used_memory_peak_perc:22.27%
used_memory_overhead:831304
used_memory_startup:810256
used_memory_dataset:43480
used_memory_dataset_perc:67.38%
allocator_allocated:918584
allocator_active:1196032
allocator_resident:3571712
total_system_memory:3973308416
total_system_memory_human:3.70G
used_memory_lua:37888
used_memory_lua_human:37.00K
used_memory_scripts:0
used_memory_scripts_human:0B
number_of_cached_scripts:0
maxmemory:0
maxmemory_human:0B
maxmemory_policy:noeviction
allocator_frag_ratio:1.30
allocator_frag_bytes:277448
allocator_rss_ratio:2.99
allocator_rss_bytes:2375680
rss_overhead_ratio:2.69
rss_overhead_bytes:6037504
mem_fragmentation_ratio:11.55
mem_fragmentation_bytes:8777176
mem_not_counted_for_evict:0
mem_replication_backlog:0
mem_clients_slaves:0
mem_clients_normal:20520
mem_aof_buffer:0
mem_allocator:jemalloc-5.1.0
active_defrag_running:0
lazyfree_pending_objects:0
lazyfreed_objects:0# Persistence
loading:0
current_cow_size:0
current_cow_size_age:0
current_fork_perc:0.00
current_save_keys_processed:0
current_save_keys_total:0
rdb_changes_since_last_save:8
rdb_bgsave_in_progress:0
rdb_last_save_time:1639612880
rdb_last_bgsave_status:ok
rdb_last_bgsave_time_sec:0
rdb_current_bgsave_time_sec:-1
rdb_last_cow_size:2256896
aof_enabled:0
aof_rewrite_in_progress:0
aof_rewrite_scheduled:0
aof_last_rewrite_time_sec:-1
aof_current_rewrite_time_sec:-1
aof_last_bgrewrite_status:ok
aof_last_write_status:ok
aof_last_cow_size:0
module_fork_in_progress:0
module_fork_last_cow_size:0# Stats
total_connections_received:207
total_commands_processed:100037
instantaneous_ops_per_sec:0
total_net_input_bytes:4503497
total_net_output_bytes:574039
instantaneous_input_kbps:0.00
instantaneous_output_kbps:0.00
rejected_connections:0
sync_full:0
sync_partial_ok:0
sync_partial_err:0
expired_keys:0
expired_stale_perc:0.00
expired_time_cap_reached_count:0
expire_cycle_cpu_milliseconds:2264
evicted_keys:0
keyspace_hits:1
keyspace_misses:0
pubsub_channels:0
pubsub_patterns:0
latest_fork_usec:526
total_forks:3
migrate_cached_sockets:0
slave_expires_tracked_keys:0
active_defrag_hits:0
active_defrag_misses:0
active_defrag_key_hits:0
active_defrag_key_misses:0
tracking_total_keys:0
tracking_total_items:0
tracking_total_prefixes:0
unexpected_error_replies:0
total_error_replies:160
dump_payload_sanitizations:0
total_reads_processed:100396
total_writes_processed:100189
io_threaded_reads_processed:0
io_threaded_writes_processed:0# Replication
role:master
connected_slaves:0
master_failover_state:no-failover
master_replid:4a1e1bd6aed8fd6abbb4a698705848bdff201afb
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:0
second_repl_offset:-1
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0# CPU
used_cpu_sys:69.649760
used_cpu_user:94.304227
used_cpu_sys_children:0.003025
used_cpu_user_children:0.003087
used_cpu_sys_main_thread:69.644654
used_cpu_user_main_thread:94.300740# Modules# Errorstats
errorstat_ERR:count=160# Cluster
cluster_enabled:0# Keyspace
db0:keys=10,expires=0,avg_ttl=0

其中的参数说明:

# Clients
connected_clients:1 # 正在连接得客户端
maxclients:10000   # 允许连接得最大客户端数量# Stats
instantaneous_ops_per_sec:0  # 每秒执行多少次指令# Memory
used_memory:874784 # Redis分配的内存总量(byte),包含redis进程内部的开销和数据占用的内存
used_memory_human:854.28K # Redis分配的内存总量(byte),包含redis进程内部的开销和数据占用的内
used_memory_rss:9609216 # 向操作系统申请的内存大小(Mb)(这个值一般是大于used_memory的,因为Redis的内存分配策略会产生内存碎片)
used_memory_rss_human:9.16M  # redis的内存消耗峰值(byte)
used_memory_peak:3928792 # redis的内存消耗峰值(KB)
used_memory_peak_human:3.75M
maxmemory:0  # 配置中设置的最大可使用内存值(byte),默认0,不限制
maxmemory_human:0B
maxmemory_policy:noeviction 当达到maxmemory时的淘汰策略

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/843445.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JMH304-剑侠情缘2网络版+2017纹饰端+翅膀+单机+外网整理+各种副本

资源介绍: 藏剑-太虚-梁山-杀手堂种树地宫师门纹饰装备长流云阳套等等———– 做登录器联系站长 资源截图: 下载地址

.NET周刊【5月第4期 2024-05-26】

国内文章 开源低代码框架 ReZero API 正式版本发布 ,界面操作直接生成API https://www.cnblogs.com/sunkaixuan/p/18201175 ReZero是一款.NET6的中间件,采用MIT许可证开源,目的是降低.NET Core开发的门槛。它提供界面操作生成API的功能&am…

《Ai学习笔记》自然语言处理 (Natural Language Processing):常见机器阅读理解模型(上)02

Glove 词向量: 在机器理解中的词的表示: 词袋(bow,bag of words) one-hot 词向量 word2vec glove 目的:将一个词转换成一个向量 Word2vec 是一种用于生成词向量的工具包,由Google在2013年开源推出…

大规模语言模型的书籍分享

在当今人工智能领域,大规模语言模型成为了研究和应用的热点之一。它们以其大规模的参数和强大的性能表现,推动着机器学习和深度学习技术的发展。对于GPT 系列大规模语言模型的发展历程,有两点令人印象深刻。 第一点是可拓展的训练架构与学习范…

《TCP/IP网络编程》(第十二章)I/O复用(1)

本章将讨论实现并发服务器的第二种办法,基于I/O复用的服务器端构建。 I/O复用它允许单个进程或线程同时处理多个输入/输出(I/O)操作,而无需为每个I/O操作创建一个独立的线程或进程。这种技术可以显著提高应用程序的效率和性能&…

前端学习--React部分

文章目录 前端学习--React部分前言1.React简介1.1React的特点1.2引入文件1.3JSX🍉JSX简介与使用🍉JSX语法规则 1.4模块与组件🍉模块🍉组件 1.5安装开发者工具 2.React面向组件编程2.1创建组件🍉函数式组件&#x1f349…

Elasticsearch 认证模拟题 - 1

1、题目 定义一个数据流,满足 data-stream_*_*,数据首先分布在 data_hot,5分钟后移动到 data_warm,3分钟后到 data_cold,再过 8 分钟删除。 1.1 考点 生命周期索引模板数据流 1.2 答案 # 修改生命周期策略修改时间…

【算法】位运算算法——只出现一次的数字Ⅱ

题解:只出现一次的数字Ⅱ(位运算算法) 目录 1.题目2.题解:3.代码示例4.总结 1.题目 题目链接:LINK 要求:时间复杂度:O(N),空间复杂度:O(1) 2.题解: 3.代码示例 class Solution {…

Java设计模式 _行为型模式_中介者模式

一、中介者模式 1、中介者模式 中介者模式(Mediator Pattern)是一种行为型模式。主要通过一个中介类,该类通常处理不同类之间的通信,并支持松耦合,使代码易于维护。 2、实现思路 (1)、定义实体…

【Linux】-Kafka集群安装部署[18]

简介 Apache Kafka是一款分布式的、去中心化的、高吞吐低延迟、订阅模式的消息队列系统。 同RabbitMQ一样,Kafka也是消息队列。不过RabbitMQ多用于后端系统,因其更加专注于消息的延迟和容错。 Kafka多用于大数据体系,因其更加专注于数据的…

K210 数字识别 笔记

一、烧写固件 连接k210开发板,点开烧录固件工具,选中固件,并下载 二、模型训练 网站:MaixHub 1、上传文件 2、开始标记数据 添加9个标签,命名为1~9,按键盘w开始标记,键盘D可以下一张图片&…

解密Prompt系列15. LLM Agent之数据库应用设计:DIN C3 SQL-Palm BIRD

上一章我们主要讲搜索引擎和LLM的应用设计,这一章我们来唠唠大模型和DB数据库之间的交互方案。有很多数据平台已经接入,可以先去玩玩再来看下面的实现方案,推荐 [sql translate]:简单,文本到SQL,SQL到文本…

后端企业级开发之yaml数据序列化格式文件详解2024

yaml格式 数据格式 yaml 是一种数据序列化的格式 容易阅读 容易与脚本语言交互 以数据为核心 重数据轻格式 我们要知道他怎么书写 大小写敏感 属性层级关系使用多行描述 每行结尾使用冒号结束 使用缩进表示层级关系 同层级左侧对其 只运行使用空格 属性前面添加空格 #表…

面试二十六、c++语言级别的多线程编程

一、 多线程编程 ​​​​​ 这里的c语言级别的多线程和linux的有一定的区别,c语言级别提供的多线程比较严格,如果主线程结束了,但是子线程没有结束,进程就会异常终止,而linux不会,会继续执行。 二、模拟卖…

Window VScode配置Conda教程(成功版)

VScode配置Conda 参考博文:https://blog.csdn.net/qq_51831335/article/details/126757014Anaconda安装(注意勾选自动配置环境变量!) 官网:https://www.anaconda.com/download/success VScode配置 python插件安装安装 …

关于Java程序入口args参数

关于Java程序入口args参数 我们都知道一个java工程会有一个主程序入口,即我们常见到的如下代码 public static void main(String[] args) {// 中间程序 }但是很多人可能都不知道主程序入口中的String[] args后面的args会有怎么样一个使用场景呢? 其实在…

爬虫逆向实例小记——某数据知识管理网站-DES-ECB模式

aHR0cHM6Ly9rZC5uc2ZjLmNuL2ZpbmFsUHJvamVjdEluaXQ 注意:本文是逆向部分比较少,主要为了流程走通,限于代码搬运工。 第一步:分析页面 此网站经过请求响应,可以看出响应内容为加密内容。 第二步:判断加密类型 在XHR …

java.lang.NumberFormatException: For input string:

创建SpringBoot,Mybatis的项目时候,Service层调用Mapper层时候爆出了一个错误 发现报错是一个类型转换错误,经过排查后发现是因为mapper接收的实体类中没有写空参构造

Redis 中 List 数据结构详解

目录 List 用法 1. 增 2. 删 3. 查 内部编码 应用场景 前言 Redis 中的 List 和 Set 数据结构各有特点,适用于不同的应用场景。List 提供了有序的列表结构,适合用于消息队列和任务列表等场景;Set 提供了无序且不重复的集合结构&#…

Redis常用命令——Hash篇

前面我们讲述了String的相关操作命令。本篇文章主要讲解Redis中数据结构Hash的相关操作命令。希望会对你有所帮助。 目录 一、Hash哈希 二、命令 HSET HGET HEXISTS HDEL HKEYS HVALS HGETALL HMGET HLEN HSETNX HINCRBY 和 HINCRBYFLOAT 三、小结 🙋‍♂️ 作者&a…