高端网站建设步骤/百度首页广告多少钱

高端网站建设步骤,百度首页广告多少钱,帝国网站搬家,wordpress如何添加搜索到主菜单前言 无论是本科和研究生都会有的数学建模含金量还是很高的,下面将介绍一下进行数学建模的一些基本操作方法,这里主要是利用sklearn 进行建模,包括前期的一些数据预处理以及一些常用的机器学习模型以及一些简单粗暴的通用建模步骤&#xff0…

前言

无论是本科和研究生都会有的数学建模含金量还是很高的,下面将介绍一下进行数学建模的一些基本操作方法,这里主要是利用sklearn 进行建模,包括前期的一些数据预处理以及一些常用的机器学习模型以及一些简单粗暴的通用建模步骤,仅代表我自己意见。

一、数学建模常见的问题类型

常见的问题类型只有三种:分类、回归、聚类。而明确具体问题对应的类型也很简单。比如,如果你需要通过输入数据得到一个类别变量,那就是分类问题。
分成两类就是二分类问题,分成两类以上就是多分类问题。常见的有:判别一个邮件是否是垃圾邮件、根据图片分辩图片里的是猫还是狗等等。
如果你需要通过输入数据得到一个具体的连续数值,那就是回归问题。比如:预测某个区域的房价等。
常用的分类和回归算法算法有:RF(随机森林)、SVM (支持向量机) 、xgboost、KNN、LR算法、SGD (随机梯度下降算法)、Bayes (贝叶斯估计)以及随机森林等。这些算法大多都既可以解分类问题,又可以解回归问题。
如果你的数据集有对应的属性标签,那我们通常要做的就是对数据划分训练集和验证集,然后再进行预测和评估,选用不同的评价指标来进行评估,比如常见的有accuracy (准确率)、pcc(相关系数)、mse(平均绝对误差)等值。
如果你的数据集并没有对应的属性标签,你要做的,是发掘这组样本在空间的分布, 比如分析哪些样本靠的更近,哪些样本之间离得很远, 这就是属于聚类问题。常用的聚类算法有k-means算法。

二、使用步骤

1.数据集准备工作

在介绍万能模板之前,为了能够更深刻地理解这三个模板,我们加载一个Iris(鸢尾花)数据集来作为应用万能模板的小例子,Iris数据集在前边的文章中已经提到过多次了

代码如下(示例):

from sklearn.datasets import load_iris
data = load_iris()
x = data.data
y = data.target

x值如下,可以看到scikit-learn把数据集经过去除空值处理放在了array里,所以x是一个(150,4)的数组,保存了150个数据的4个特征:
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.2]
[4.8 3.4 1.6 0.2]
[4.8 3. 1.4 0.1]
[4.3 3. 1.1 0.1]
[5.8 4. 1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1. 0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
[5. 3. 1.6 0.2]
[5. 3.4 1.6 0.4]
[5.2 3.5 1.5 0.2]
[5.2 3.4 1.4 0.2]
[4.7 3.2 1.6 0.2]
[4.8 3.1 1.6 0.2]
[5.4 3.4 1.5 0.4]
[5.2 4.1 1.5 0.1]
[5.5 4.2 1.4 0.2]
[4.9 3.1 1.5 0.2]
[5. 3.2 1.2 0.2]
[5.5 3.5 1.3 0.2]
[4.9 3.6 1.4 0.1]
[4.4 3. 1.3 0.2]
[5.1 3.4 1.5 0.2]
[5. 3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[4.4 3.2 1.3 0.2]
[5. 3.5 1.6 0.6]
[5.1 3.8 1.9 0.4]
[4.8 3. 1.4 0.3]
[5.1 3.8 1.6 0.2]
[4.6 3.2 1.4 0.2]
[5.3 3.7 1.5 0.2]
[5. 3.3 1.4 0.2]
[7. 3.2 4.7 1.4]
[6.4 3.2 4.5 1.5]
[6.9 3.1 4.9 1.5]
[5.5 2.3 4. 1.3]
[6.5 2.8 4.6 1.5]
[5.7 2.8 4.5 1.3]
[6.3 3.3 4.7 1.6]
[4.9 2.4 3.3 1. ]
[6.6 2.9 4.6 1.3]
[5.2 2.7 3.9 1.4]
[5. 2. 3.5 1. ]
[5.9 3. 4.2 1.5]
[6. 2.2 4. 1. ]
[6.1 2.9 4.7 1.4]
[5.6 2.9 3.6 1.3]
[6.7 3.1 4.4 1.4]
[5.6 3. 4.5 1.5]
[5.8 2.7 4.1 1. ]
[6.2 2.2 4.5 1.5]
[5.6 2.5 3.9 1.1]
[5.9 3.2 4.8 1.8]
[6.1 2.8 4. 1.3]
[6.3 2.5 4.9 1.5]
[6.1 2.8 4.7 1.2]
[6.4 2.9 4.3 1.3]
[6.6 3. 4.4 1.4]
[6.8 2.8 4.8 1.4]
[6.7 3. 5. 1.7]
[6. 2.9 4.5 1.5]
[5.7 2.6 3.5 1. ]
[5.5 2.4 3.8 1.1]
[5.5 2.4 3.7 1. ]
[5.8 2.7 3.9 1.2]
[6. 2.7 5.1 1.6]
[5.4 3. 4.5 1.5]
[6. 3.4 4.5 1.6]
[6.7 3.1 4.7 1.5]
[6.3 2.3 4.4 1.3]
[5.6 3. 4.1 1.3]
[5.5 2.5 4. 1.3]
[5.5 2.6 4.4 1.2]
[6.1 3. 4.6 1.4]
[5.8 2.6 4. 1.2]
[5. 2.3 3.3 1. ]
[5.6 2.7 4.2 1.3]
[5.7 3. 4.2 1.2]
[5.7 2.9 4.2 1.3]
[6.2 2.9 4.3 1.3]
[5.1 2.5 3. 1.1]
[5.7 2.8 4.1 1.3]
[6.3 3.3 6. 2.5]
[5.8 2.7 5.1 1.9]
[7.1 3. 5.9 2.1]
[6.3 2.9 5.6 1.8]
[6.5 3. 5.8 2.2]
[7.6 3. 6.6 2.1]
[4.9 2.5 4.5 1.7]
[7.3 2.9 6.3 1.8]
[6.7 2.5 5.8 1.8]
[7.2 3.6 6.1 2.5]
[6.5 3.2 5.1 2. ]
[6.4 2.7 5.3 1.9]
[6.8 3. 5.5 2.1]
[5.7 2.5 5. 2. ]
[5.8 2.8 5.1 2.4]
[6.4 3.2 5.3 2.3]
[6.5 3. 5.5 1.8]
[7.7 3.8 6.7 2.2]
[7.7 2.6 6.9 2.3]
[6. 2.2 5. 1.5]
[6.9 3.2 5.7 2.3]
[5.6 2.8 4.9 2. ]
[7.7 2.8 6.7 2. ]
[6.3 2.7 4.9 1.8]
[6.7 3.3 5.7 2.1]
[7.2 3.2 6. 1.8]
[6.2 2.8 4.8 1.8]
[6.1 3. 4.9 1.8]
[6.4 2.8 5.6 2.1]
[7.2 3. 5.8 1.6]
[7.4 2.8 6.1 1.9]
[7.9 3.8 6.4 2. ]
[6.4 2.8 5.6 2.2]
[6.3 2.8 5.1 1.5]
[6.1 2.6 5.6 1.4]
[7.7 3. 6.1 2.3]
[6.3 3.4 5.6 2.4]
[6.4 3.1 5.5 1.8]
[6. 3. 4.8 1.8]
[6.9 3.1 5.4 2.1]
[6.7 3.1 5.6 2.4]
[6.9 3.1 5.1 2.3]
[5.8 2.7 5.1 1.9]
[6.8 3.2 5.9 2.3]
[6.7 3.3 5.7 2.5]
[6.7 3. 5.2 2.3]
[6.3 2.5 5. 1.9]
[6.5 3. 5.2 2. ]
[6.2 3.4 5.4 2.3]
[5.9 3. 5.1 1.8]]
y值如下,共有150行,其中0、1、2分别代表三类花:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2]
上面的是 x 数据,下边的是 y 数据,我们可以看到此时的数据集是带有数据标签的,所以此时建立模型的目的就是首先用一部分的数据进行训练,然后用另一部分数据进行预测,并且与其已有的标签进行对比验证,判断其预测准确性。

2.数据集拆分

代码如下(示例):

from sklearn.model_selection import train_test_split
train_x,test_x,train_y,test_y = train_test_split(x,y,test_size=0.1,random_state=0)

数据集拆分是为了验证模型在训练集和测试集是否过拟合,使用train_test_split的目的是保证从数据集中均匀拆分出测试集。这里,简单把10%的数据集拿出来用作测试集。
test_size=0.1 是指拿出10%的数据用来做测试,test_size=0.2 就是拿出20%的数据集用来做测试。

3.模型建立

在这里插入图片描述
根据这个模板的话其实只要是机器学习中的算法都可以拿来套用这个模板,不同的就是算法的位置和模型的参数不同,不知道算法具体位置的话大家当然也可以用科技来AI一下了,比如我们要调用支持向量回归:在这里插入图片描述
比如我们要调用AUC指标进行评价:
在这里插入图片描述
如果大家经常调用的话,每个包的存放位置都是有规律的,好多同类算法在一个集成包下。

#随机森林
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, r2_scoremodel_rf = RandomForestRegressor(n_estimators=500, random_state=42)
model_rf.fit(X_train, y_train)
# 预测测试集  
rf_pred = model_rf.predict(X_test)# 计算MSE
rf_test_mse = mean_squared_error(y_test, rf_pred)
rf_test_rmse = np.sqrt(mean_squared_error(y_test, rf_pred))
# 计算R2分数  
rf_test_r2 = r2_score(y_test, rf_pred)
from sklearn.svm import SVR
import numpy as np# 拟合SVR模型
svr_rbf = SVR(kernel='rbf') svr_rbf.fit(X_train, y_train)from sklearn.metrics import mean_squared_error, r2_score# 预测测试集  
svr_rbf_pred = svr_rbf.predict(X_test)# 计算MSE
svr_rbf_test_mse = mean_squared_error(y_test, svr_rbf_pred)
svr_rbf_test_rmse = np.sqrt(mean_squared_error(y_test, svr_rbf_pred))
# 计算R2分数  
svr_rbf_test_r2 = r2_score(y_test, svr_rbf_pred)

4.模型改进方案2.0

在上一个版本当中,当你多次运行同一个程序就会发现:每次运行得到的精确度并不相同,而是在一定范围内浮动,这是因为数据输入模型之前会进行选择,每次训练时数据输入模型的顺序都不一样。所以即使是同一个程序,模型最后的表现也会有好有坏。
有些情况下,在训练集上,通过调整参数设置使模型的性能达到了最佳状态,但在测试集上却可能出现过拟合的情况。这个时候,我们在训练集上得到的评分不能有效反映出模型的泛化性能,这种情况下就是我们经常所说的过拟合问题,在训练数据集上通过调整模型参数等操作使得数据在训练集上的准确率达到了较高情况,但到了测试集上真正开始检验的时候准确率却没有那么高。
为了解决上述两个问题,还应该在训练集上划分出验证集(validation set)并结合交叉验证来解决。首先,在训练集中划分出不参与训练的验证集,只是在模型训练完成以后对模型进行评估,接着再在测试集上进行最后的评估。
但这样大大减少了可用于模型学习的样本数量,所以还需要采用交叉验证的方式多训练几次。比如说最常用的k-折交叉验证如下图所示,它主要是将训练集划分为 k 个较小的集合。然后将k-1份训练子集作为训练集训练模型,将剩余的 1 份训练集子集作为验证集用于模型验证。这样需要训练k次,最后在训练集上的评估得分取所有训练结果评估得分的平均值。
之所以说这样减少了可用于模型学习的样本数量是因为并不是所有的样本都用来训练,我们在进行模型训练的时候划分了一部分数据集用来与训练集的预测值进行比较,所以用来比较的这部分数据集是没有参与训练的,假如我们采用五折交叉验证的话进行过程如下图所示:
在这里插入图片描述
这时我们是将数据均匀的划分成五份,每次用四份来进行训练,一份来进行测试,执行五次,所以通过五折交叉验证我们相当于用五份数据都做了一次测试集,这样一方面可以让训练集的所有数据都参与训练,另一方面也通过多次计算得到了一个比较有代表性的得分。唯一的缺点就是计算代价很高,增加了k倍的计算量。
scikit-learn已经将优秀的数学家所想到的均匀拆分方法和程序员的智慧融合在了cross_val_score() 这个函数里了,只需要调用该函数即可,不需要自己想什么拆分算法,也不用写for循环进行循环训练。
在求精确度的时候,我们可以简单地输出平均精确度:

# 输出精确度的平均值
# print("训练集上的精确度: %0.2f " % scores1.mean())

但是既然我们进行了交叉验证,做了这么多计算量,单求一个平均值还是有点浪费了,可以利用下边代码捎带求出精确度的置信度:

# 输出精确度的平均值和置信度区间
print("训练集上的平均精确度: %0.2f (+/- %0.2f)" % (scores2.mean(), scores2.std() * 2))

以上说了那么多,下面让我们来看一下具体的应用案例:

### svm分类器from sklearn.model_selection import cross_val_score
from sklearn.svm import SVCsvm_model = SVC()
svm_model.fit(train_x,train_y)scores1 = cross_val_score(svm_model,train_x,train_y,cv=5, scoring='accuracy')
# 输出精确度的平均值和置信度区间
print("训练集上的精确度: %0.2f (+/- %0.2f)" % (scores1.mean(), scores1.std() * 2))scores2 = cross_val_score(svm_model,test_x,test_y,cv=5, scoring='accuracy')
# 输出精确度的平均值和置信度区间
print("测试集上的平均精确度: %0.2f (+/- %0.2f)" % (scores2.mean(), scores2.std() * 2))print(scores1)
print(scores2)

输出:
训练集上的精确度: 0.96 (+/- 0.09)
测试集上的平均精确度: 0.80 (+/- 0.13)
[0.95833333 0.95833333 1. 1. 0.875 ]
[0.66666667 0.83333333 0.83333333 0.83333333 0.83333333]

# LogisticRegression分类器from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegressionlr_model = LogisticRegression()
lr_model.fit(train_x,train_y)scores1 = cross_val_score(lr_model,train_x,train_y,cv=5, scoring='accuracy')
# 输出精确度的平均值和置信度区间
print("训练集上的精确度: %0.2f (+/- %0.2f)" % (scores1.mean(), scores1.std() * 2))scores2 = cross_val_score(lr_model,test_x,test_y,cv=5, scoring='accuracy')
# 输出精确度的平均值和置信度区间
print("测试集上的平均精确度: %0.2f (+/- %0.2f)" % (scores2.mean(), scores2.std() * 2))print(scores1)
print(scores2)

输出:
训练集上的精确度: 0.95 (+/- 0.10)
测试集上的平均精确度: 0.93 (+/- 0.16)
[0.95833333 0.91666667 1. 1. 0.875 ]
[1. 1. 0.83333333 1. 0.83333333]

模型改进方案3.0

以上都是通过算法的默认参数来训练模型的,不同的数据集适用的参数难免会不一样,scikit-learn对于不同的算法也提供了不同的参数可以自己调节。本文目的是构建一个万能算法框架构建模板,所以,这里只介绍一下一个通用的自动化调参方法。
首先要明确的是,scikit-learn提供了算法().get_params()方法来查看每个算法可以调整的参数,比如说,我们想查看SVM分类器算法可以调整的参数,可以:

SVC().get_params()

{‘C’: 1.0, ‘break_ties’: False, ‘cache_size’: 200, ‘class_weight’: None, ‘coef0’: 0.0, ‘decision_function_shape’: ‘ovr’, ‘degree’: 3, ‘gamma’: ‘scale’, ‘kernel’: ‘rbf’, ‘max_iter’: -1, ‘probability’: False, ‘random_state’: None, ‘shrinking’: True, ‘tol’: 0.001, ‘verbose’: False}
在这里插入图片描述
参数的形式如下:
在这里插入图片描述
程序就会按照顺序测试这几个参数的组合效果,根本不需要自己辛辛苦苦实现。假如我们要调节n个参数,每个参数有4个备选值。那么程序就会训练 4n 。当n为10的时候是 410 ,这是一个对于计算机来说庞大的计算量。而当我们将这10个参数拆分成5组,每次只调节两个参数,其他参数采用默认值,那么计算量就是5*4**2=80 ,计算量会大大减少。
列表的作用这是如此,保证了每次只调节列表中的一个字典中的参数。运行之后,best_model就是我们得到的最优模型,可以利用这个模型进行预测。
当然,best_model 还有好多好用的属性:
best_model.cv_results_:可以查看不同参数情况下的评价结果。
best_model.param_ :得到该模型的最优参数
best_model.best_score_: 得到该模型的最后评分结果

实现SVM分类器

###1、svm分类器
from sklearn.model_selection import cross_val_score,GridSearchCV
from sklearn.svm import SVC
svm_model = SVC()
params = [{'kernel': ['linear'], 'C': [1, 10, 100, 100]},{'kernel': ['poly'], 'C': [1], 'degree': [2, 3]},{'kernel': ['rbf'], 'C': [1, 10, 100, 100], 'gamma':[1, 0.1, 0.01, 0.001]}]
best_model = GridSearchCV(svm_model, param_grid=params,cv = 5,scoring = 'accuracy')
best_model.fit(train_x,train_y)

查看最优得分:

best_model.best_score_

0.9583333333333334
查看最优参数:

best_model.best_params_

{‘C’: 10, ‘kernel’: ‘linear’}

查看最优模型的所有参数:

best_model.best_estimator_

输出:
SVC(C=10, kernel=‘linear’)
这里对于线性核我们只设置了两个可以调节的参数,所以这里出现了两个参数。
这个函数会显示出没有调参的参数,便于整体查看模型的参数。

查看每个参数的交叉验证结果:

best_model.cv_results_

在这里插入图片描述
这个命令显示的参数很多,平常一般不用

总结

这里简单介绍了数学建模经常会用到的一些操作以及基本流程步骤,基本的功能都可以实现了,当然还有很多其他部分还需要再细化,比如说数据处理部分,对于缺失值如何做到有效的填补以及如何由文字转为编码格式进行分析等,后续会进行更加详细的补充和分析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/84070.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在 Simscape Electrical 中对两区 MVDC 电动船的建模和仿真(Simulink实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

springboot集成mybatis-plus

一、在spring boot中配置mybatis-plus 1、创建一个spring boot项目&#xff0c;注意勾选mysql 2、在pom.xml文件中添加mybatis-plus的依赖包 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0&qu…

Llama-2 推理和微调的硬件要求总结:RTX 3080 就可以微调最小模型

大语言模型微调是指对已经预训练的大型语言模型&#xff08;例如Llama-2&#xff0c;Falcon等&#xff09;进行额外的训练&#xff0c;以使其适应特定任务或领域的需求。微调通常需要大量的计算资源&#xff0c;但是通过量化和Lora等方法&#xff0c;我们也可以在消费级的GPU上…

区块链技术:解密去中心化的革命

文章目录 区块链的基础概念什么是区块链&#xff1f;区块链的核心原理1. 分布式账本2. 区块3. 加密技术4. 共识机制 区块链的工作原理区块链的交易过程区块链的安全性共识机制的作用 区块链的应用领域1. 金融服务2. 供应链管理3. 物联网4. 医疗保健5. 政府与公共服务 区块链的未…

Fair下发产物-布局DSL生成原理

一、概述 大家都知道,Flutter在release环境是以AOT模式运行的,这就决定了我们要做动态化的话无法简单的通过动态下发dart代码执行的。根据Fair团队的前期调研,我们对布局动态化和逻辑动态化的实现采用了两套不同的实现方案,对于布局部分,我们在解析dart源文件之后生成DSL…

蓝桥杯 题库 简单 每日十题 day2

01 卡片 题目描述 本题为填空题&#xff0c;只需要算出结果后&#xff0c;在代码中使用输出语句将所填结果输出即可。 小蓝有很多数字卡片&#xff0c;每张卡片上都是数字 0 到 9。 小蓝准备用这些卡片来拼一些数&#xff0c;他想从 1 开始拼出正整数&#xff0c;每拼一个&a…

RK3568开发笔记(十一):开发版buildroot固件移植一个ffmpeg播放rtsp的播放器Demo

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/133022813 红胖子网络科技博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬…

LeetCode 25. K 个一组翻转链表

题目链接 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 题目解析 创建一个哨兵位头结点&#xff0c;然后将其链接在原来头结点的前边&#xff0c;以便于我们后面的便利使用。 每次翻转一小段之前首先判断一下接下里我们要翻转的这一小段的长度是否…

书剑宠物疫苗接种管理软件操作教程

【软件简介】 书剑宠物疫苗接种管理软件是一款宠物疫苗接种管理的工具&#xff0c;适合宠物诊所使用。具有动物主人建档、宠物疫苗接种登记管理、每日提醒、打印疫苗接种通知卡、自定义短信提醒模板等完善的功能。 另外本软件的特色是同时具有手机网页版功能&#xff0c;手机…

uni-app获取元素具体位置获取失败

场景&#xff1a;想要通过链接跳转传递catid&catid2类别id,商品类别id 跳到这一页左侧对应的类别栏上面,同时跳到右侧列表滚动到对应商品那一块区域。 遇到的问题&#xff1a;在for循环中通过绑定id获取不到商品列表的具体位置。 原因&#xff1a;在onReady函数和mounted函…

可视化图表组件之股票数据分析应用

股市是市场经济的必然产物&#xff0c;在一个国家的金融领域之中有着举足轻重的地位。在过去&#xff0c;人们对于市场走势的把握主要依赖于经验和直觉&#xff0c;往往容易受到主观因素的影响&#xff0c;导致决策上出现偏差。如今&#xff0c;通过数据可视化呈现&#xff0c;…

Puppeter与Electron的结合,使用Electron创建可视化界面

前言 上一篇文章&#xff1a;Puppeteer基础入门、常见应用、利用谷歌插件编写Puppeteer脚本&#xff0c;简单介绍了Puppeteer的基本使用&#xff0c;以及如何编写一个脚本。 但是呢脚本的运行需要在node环境里&#xff0c;开发人员可能没什么问题。但是如果你写的这个脚本要给…

Selenium 4.11 正式发布--再也不用手动更新chrome driver 了

Selenium 4.11.0 正式发布了&#xff0c;先来看一下主要特性。 Chrome DevTools支持的版本现在是&#xff1a;v113、v114和v115&#xff08;Firefox仍然对所有版本使用v85&#xff09; 通过Selenium Manager支持Chrome For Testing&#xff08;CfT&#xff09; Selenium Manag…

RabbitMQ —— 初窥门径

前言 RabbitMQ作为当下主流的消息中间件之一&#xff0c;无疑是我们Java后端开发技术成长路线的重要一环&#xff0c;在这篇文章中荔枝将会梳理入门RabbitMQ的知识&#xff0c;文章涉及RabbitMQ的基本概念及其环境配置&#xff0c;荔枝的RabbitMQ是在Docker上部署的&#xff0c…

《TCP/IP网络编程》阅读笔记--多线程服务器端的实现

目录 1--多线程的优点 2--进程和线程的差异 3--线程创建 4--线程使用 5--线程安全问题 6--互斥量 7--信号量 8--线程销毁 9--多线程并发聊天程序 9-1--服务器端 9-2--客户端 9-3--测试结果 1--多线程的优点 多进程服务器的缺点&#xff1a; ① 创建进程的过程会带来…

Ubuntu 20.04中docker-compose部署Nightingale

lsb_release -r可以看到操作系统版本是20.04&#xff0c;uname -r可以看到内核版本是5.5.19。 sudo apt install -y docker-compose安装docker-compose。 完成之后如下图&#xff1a; cd /opt/n9e/docker/进入到/opt/n9e/docker/里边。 docker-compose up -d进行部署。 …

【LeetCode-中等题】150. 逆波兰表达式求值

文章目录 题目方法一&#xff1a;栈 题目 方法一&#xff1a;栈 class Solution {public int evalRPN(String[] tokens) {Deque<Integer> deque new LinkedList<>();String rpn "-*/";//符号集 用来判断扫描的是否为运算符int sum 0;for(int i 0 ; i…

华为云云耀云服务器L实例评测|centos7.9在线使用cloudShell下载rpm解压包安装mysql并开启远程访问

文章目录 ⭐前言⭐使用华为cloudShell连接远程服务器&#x1f496; 进入华为云耀服务器控制台&#x1f496; 选择cloudShell ⭐安装mysql压缩包&#x1f496; wget下载&#x1f496; tar解压&#x1f496; 安装步骤&#x1f496; 初始化数据库&#x1f496; 修改密码&#x1f4…

【zlm】 webrtc源码讲解

目录 前端WEB 服务器收到请求 服务端的处理 播放 拉流 参考文章 前端WEB 服务器收到请求 POST /index/api/webrtc?applive&streamtest&typeplay HTTP/1.1 HttpSession::onRecvHeaderHttpSession::Handle_Req_POSTHttpSession::Handle_Req_POSTif (totalConte…

科技评估分类

声明 本文是学习GB-T 42776-2023 科技评估分类. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本文件确立了科技评估的分类原则&#xff0c;描述了分类方法&#xff0c;规定了编码方法、分类与代码。 本文件适用于科技评估的规划、设计、委…