【数据结构】第七节:堆

 个人主页 深情秋刀鱼@-CSDN博客 

 数据结构专栏:数据结构与算法

源码获取:数据结构: 上传我写的关于数据结构的代码 (gitee.com)

目录

一、堆

1.堆的概念

2.堆的定义

二、堆的实现

1.初始化和销毁

2.插入

向上调整算法

3.删除

向下调整算法

4.取堆顶元素

5.判空

三、Top_k问题

1.问题描述

2.面试中的Top_k问题

四、堆排序

1.建堆

 2.堆排序

五、堆的时间复杂度

1.建堆

a.树中高度与节点的关系

b.向下调整建堆算法

c.向上调整建堆算法

 2.堆排序


一、堆

1.堆的概念

         堆是一棵完全二叉树,且其中的节点总是不大于(或不小于某个值)。如果堆中的节点总是不大于某个值(根节点最大),称为大根堆;如果堆中的节点总是不小于某个值(根节点最小)将根节点最小的堆称为小根堆。

        大根堆和小根堆描述的是双亲节点和子节点之间的关系,而子节点之间没有直接的联系。

2.堆的定义

typedef int HPDataType;//堆
typedef struct Heap
{HPDataType* a;int size;int capacity;
}Heap;

        二叉树一般可以使用两种结构存储,一种顺序结构(数组),一种链式结构(链表)。由于堆是一棵完全二叉树,用数组结构存储较为简洁。

        数组中双亲节点和子节点之间的关系:

  • 当双亲结点的下标为i时,左子节点的下标=2 * i + 1,右子节点的下标=2 * i + 2
  • 当子节点的下标为i时,双亲节点的下标=(i - 1)/ 2

二、堆的实现

1.初始化和销毁

//初始化
void HPInit(Heap* php)
{assert(php);php->a = NULL;php->size = php->capacity = 0;
}//销毁
void HPDestroy(Heap* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}

2.插入

        堆在内存中是以数组的形式存储的,在逻辑上需要将数组看成一棵完全二叉树。向堆中插入数据时要保证堆的结构不被破坏,并将其调整为小根堆或大根堆时需要用到向上调整算法

向上调整算法

        使用前提:左右子树必须是一个堆,才能调整。

        算法实现:以小根堆为例,在数组尾部(下标为size-1)的位置插入数据(记下标为child),被插入数据child通过下标之间的关系找到child所在的这棵子树的根(记下标为parent)并与根节点比较,如果a[child]<a[parent]说明此时双亲节点大于子结点的,不符合小根堆的性质,此时需要交换child与parent的位置并更新child和parent的值,一直到堆顶(下标为0)则调整结束。

//交换
void Swap(HPDataType* a, HPDataType* b)
{HPDataType tmp = *b;*b = *a;*a = tmp;
}//向上调整算法(小根堆)
void AdjustUP(HPDataType* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[parent] > a[child]){Swap(&a[parent], &a[child]);child = parent;parent = (child - 1) / 2;//更新下标值}elsebreak;}
}
  •  图解(小根堆):

  • 代码实现:
//插入
void HPPush(Heap* php, HPDataType x)
{assert(php);if (php->size == php->capacity){int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;HPDataType* tmp = (HPDataType*)realloc(php->a, newcapacity * sizeof(HPDataType));if (tmp == NULL){perror("realloc fail!");return;}php->a = tmp;php->capacity = newcapacity;}php->a[php->size++] = x;AdjustUP(php->a, php->size - 1);
}

3.删除

        删除规定只删除堆顶元素(删除堆尾元素size--即可),删除堆顶元素的同时需要保持结构不变,需要用到向下调整算法。

向下调整算法

        使用前提:左右子树必须是一个堆,才能调整。

        算法实现:以小根堆为例,将首(B)尾(A)元素交换,在尾部删除堆顶元素B,在堆顶的尾元素A通过向下调整算法调整到合适的位置再形成堆。新的堆顶元素A下标为0(记为parent),以parent为根的两个子节点分别为左child节点(下标2*parent+1)、右child节点(下标2*parent+2),为满足小根堆的性质,我们需要在这两个节点中找到较小的一个与元素A交换成为新的根,元素A成为子节点后再向下寻找以元素A为根的两个子节点,一直到堆底调整结束。

//向下调整算法
void AdjustDown(HPDataType* a, int n, int parent)
{//假设法int child = 2 * parent + 1;while (child < n){//两个子节点中较小的那个(注意边界的处理)if (child + 1 < n && a[child] > a[child + 1])child++;if (a[parent] > a[child]){Swap(&a[parent], &a[child]);parent = child;child = 2 * parent + 1;}elsebreak;}
}

        在判断两个子节点的大小时不妨先假设左子节点大,进入循环后再判断左右子节点的大小。

  • 图解(小根堆): 

  •  代码实现:
//删除(删除堆顶的数据)
void HPPop(Heap* php)
{assert(php && php->size > 0);Swap(&php->a[0], &php->a[php->size - 1]);php->size--;AdjustDown(php->a, php->size, 0);
}

4.取堆顶元素

//取堆顶
HPDataType HPTop(Heap* php)
{assert(php && php->size > 0);return php->a[0];
}

5.判空

//判空
bool HPEmpty(Heap* php)
{assert(php);return php->size == 0;
}

三、Top_k问题

1.问题描述

        TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。 比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前K个元素来建堆
  • 前k个最大的元素,则建小堆
  • 前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

        简单来说:以求取数组中前六个最大的元素为例,将一个元素个数为n的数组调整为大堆后,堆顶的元素就是数组中n个元素的最大值,获取堆顶元素后将堆顶元素删除(删除的步骤是堆顶元素先与堆尾元素交换,在堆尾删除堆顶元素),通过向下调整算法调整堆的结构使其仍然呈大堆排列,排列之后新的堆顶元素就是数组中n-1个元素中的最大值,依此类推。

  • 代码实现:
int a[] = { 1,2,3,5,4,9 };
int k;//前k个
scanf_s("%d", &k);
while (k--)
{printf("%d ", HPTop(&hp));HPPop(&hp);
}
  •  运行结果

2.面试中的Top_k问题

C语言:文件操作详解-CSDN博客

  • 给出N个整数,存储在磁盘文件中,要求取出最大的前k个元素。

        这个问题属于最常规的Top_k问题,建大堆然后依次popk个元素即可。但是面试中往往不会这么简单,这种方法固然存在一定的缺陷:当N过于大时,占用内存空间较多,如果给出10亿个整数就需要占用将近4G的内存空间,如果面试官对内存空间做出限制,显然这种方法就行不通了。

  • 给出N个整数,存储在磁盘文件中,要求取出最大的前k个元素且占用的内存空间不允许超过1KB。

        介绍一种很巧妙的方法:取前k个元素建小堆,然后用剩下的N-k个元素与堆顶元素比较,如果大于堆顶元素则直接覆盖堆顶元素,成为新的堆顶元素,最后用向下调整算法调整结构,依次遍历完所有的数据。这样留在堆中的元素就是最大的前k个元素。

//在text中创建N个数据
void CreateN()
{int n;scanf("%d", &n);srand((unsigned int)time(0));const char* FileName = "D:\\Git code\\data-structure\\Project_Heap\\Project_Heap\\data.txt";//文件地址FILE* fin = fopen(FileName, "w");if (fin == NULL) {perror("fopen fail");return;}for (int i = 1; i <= n; i++) {int x = (rand() + i) % 10000000;fprintf(fin, "%d\n", x);}fclose(fin);
}//Top_k
void Test3()
{CreateN();const char* FileName = "D:\\Git code\\data-structure\\Project_Heap\\Project_Heap\\data.txt";FILE* fout = fopen(FileName, "r");int k;scanf("%d", &k);int* kMinHeap = (int*)malloc(sizeof(int) * k);if (kMinHeap == NULL) {perror("malloc fail");return;}//将文件中的数据(前k个)读取到数组中for (int i = 0; i < k; i++) {fscanf(fout, "%d", &kMinHeap[i]);}//建堆for (int i = (k - 1 - 1) / 2; i >= 0; i--) {AdjustDown(kMinHeap, k, i);}int x;while (fscanf(fout, "%d", &x) > 0) {if (x > kMinHeap[0]) {kMinHeap[0] = x;AdjustDown(kMinHeap, k, 0);}}for (int i = 0; i < k; i++) {printf("%d\n", kMinHeap[i]);}fclose(fout);
}

四、堆排序

1.建堆

        给定一个数组,要求将其调整为大堆或小堆。我们可以将原数组直接看成一棵完全二叉树,然后利用向上或向下调整算法将其调整为大堆或小堆,大堆和小堆是可以自由切换的,只需要更改向下和向上调整算法中的比较逻辑即可。

  • 向上调整算法建小堆
int a[] = { 2,3,1,4,6,5,9 };
Heap hp;
HPInit(&hp);
int n = sizeof(a)/xizeof(int);
for (int i = 1; i < n; i++)AdjustUP(a, i);

        建堆逻辑:总是保证前i个数据具有堆的性质,当i=n时,整棵树都具有了堆的性质。


  • 向下调整算法建小堆
int a[] = { 2,3,1,4,6,5,9 };
Heap hp;
HPInit(&hp);
int n = sizeof(a)/sizeof(int);
for (int i = (n - 1 - 1) / 2; i < n; i++)AdjustDown(a, n, i);

        在向下调整算法建堆时,我们从倒数的第一个非叶子结点的子树开始调整,一直调整到根结点的树,就可以调整成堆。

        建堆逻辑:总是保持后i个数据具有堆的性质,当i=0时,整棵树都具有了堆的性质。


  • 图解(大根堆):

 2.堆排序

        堆排序即利用堆的思想来进行排序,总共分为两个步骤:

1. 建堆
  • 升序:建大堆
  • 降序:建小堆
2. 利用堆删除思想来进行排序:建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。
算法逻辑:以降序建小堆为例,一个元素个数为n的数组调整为小堆后,堆顶元素是数组中的最小元素,将堆顶元素与堆尾交换,然后对新的堆顶元素向下调整,一直调整到合适的位置再形成堆,此时堆顶元素应为数组中次小的元素,将次小的元素与第n-1个元素(倒数第二个)交换,再利用向下调整算法调整结构,依此类推。
代码实现:
//向下调整算法
void AdjustDown(HPDataType* a, int n, int parent)
{int child = 2 * parent + 1;while (child < n){if (child + 1 < n && a[child] > a[child + 1])child++;if (a[parent] > a[child]){Swap(&a[parent], &a[child]);parent = child;child = 2 * parent + 1;}elsebreak;}
}//交换
void Swap(HPDataType* a, HPDataType* b)
{HPDataType tmp = *b;*b = *a;*a = tmp;
}//堆排序(O(N*logN))
void HPSort(HPDataType* a, int n)
{//降序:建小堆//升序:建大堆//for (int i = 1; i < n; i++)//	AdjustUP(a, i);//向上调整建堆for (int i = (n - 1 - 1) / 2; i < n; i++)AdjustDown(a, n, i);int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);--end;}
}

图解(升序大根堆):

五、堆的时间复杂度

1.建堆

a.树中高度与节点的关系

        设有一棵高度为h的满二叉树,如下图:

根据递推公式我们可以得到节点N与高度h的关系:F(h)=2^0+2^1+2^2+.....+2^(h-1)。根据等比数列求和公式,F(h)=2^h-1。


        一棵完全二叉树节点最多的情况是一棵满二叉树(最后一层全满),节点最少的情况是最后一层有且仅有一个节点的情况。

  • 满二叉树:F(h)=2^h-1=N——h=log(N+1)
  • 完全二叉树节点最少情况:F(h)=2^(h-1)=N——h=logN+1

        综上完全二叉树的节点应在log(N+1)与logN+1之间,根据大O的渐进表示法为logN。


b.向下调整建堆算法

        在向下调整建堆的过程中,我们选择从最后一个非叶子节点的节点开始调整,在计算时间复杂度时,只考虑最坏的情况,将堆简化看作一棵满二叉树,即每个双亲节点都需要调整到最底部,如第一层2^0个节点向下移动4次,第二层2^1个节点向下移动2层,第三层2^2个节点向下移动1次。

综上,向下调整建堆得时间复杂度为O(N)。

c.向上调整建堆算法

        在向上调整建堆中,我们选择从第一个子节点开始调整。还是只考虑最坏的情况并将堆简化为一棵满二叉树。从第2个节点开始,每个节点都需要向上调整高度次,即第二层2^1个节点向上移动1次,第三层2^2个节点向上移动2次,第四层2^3个节点(看作满二叉树)向上移动3次。

综上,向下调整建堆得时间复杂度为O(N*logN)。

 2.堆排序

建堆时间复杂度对比:

  • 向上调整建堆:O(N*logN)
  • 向下调整建堆:O(N)

堆排序的实现:

void HPSort(HPDataType* a, int n)
{//降序:建小堆//升序:建大堆//for (int i = 1; i < n; i++)//	AdjustUP(a, i);//向上调整建堆for (int i = (n - 1 - 1) / 2; i < n; i++)AdjustDown(a, n, i);int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);--end;}
}

        建堆结束后,类比调整算法的推导可以得出排序的时间复杂度是O(N*logN)。  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/839991.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BioMistral 7B——医疗领域的新方法,专为医疗领域设计的大规模语言模型

1. 概述 自然语言处理领域正在以惊人的速度发展&#xff0c;ChatGPT 和 Vicuna 等大型语言模型正在从根本上改变我们与计算机交互的方式。从简单的文本理解到复杂的问题解决&#xff0c;这些先进的模型展示了类似人类的推理能力。 特别是&#xff0c;BLOOM 和 LLaMA 等开源模…

asp.net core接入prometheus

安装prometheus和Grafana 参考之前的文章->安装prometheus和Grafana教程 源代码 dotnet源代码 新建.net core7 web项目 修改Program.cs using Prometheus;namespace PrometheusStu01;public class Program {public static void Main(string[] args){var builder We…

字符函数:分类函数与转换函数

字符函数 一.字符分类函数二.字符转换函数 在编程的过程中&#xff0c;我们经常要处理字符和字符串&#xff0c;为了方便操作字符和字符串&#xff0c;C语⾔标准库中提供了一系列库函数&#xff0c;接下来我们就学习⼀下这些函数。 一.字符分类函数 C语言中有⼀系列的函数是专门…

自然语言处理实战项目29-深度上下文相关的词嵌入语言模型ELMo的搭建与NLP任务的实战

大家好,我是微学AI,今天给大家介绍一下自然语言处理实战项目29-深度上下文相关的词嵌入语言模型ELMo的搭建与NLP任务的实战,ELMo(Embeddings from Language Models)是一种深度上下文相关的词嵌入语言模型,它采用了多层双向LSTM编码器构建语言模型,并通过各层LSTM的隐藏状…

文件流下载优化:由表单提交方式修改为Ajax请求

如果想直接看怎么写的可以跳转到 解决方法 节&#xff01; 需求描述 目前我们系统导出文件时&#xff0c;都是通过表单提交后&#xff0c;接收文件流自动下载。但由于在表单提交时没有相关调用前和调用后的回调函数&#xff0c;所以我们存在的问题&#xff0c;假如导出数据需…

MyBatisPlus使用流程

引入依赖 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.5.4</version> </dependency> 版本号根据需要选取 在实体类上加注解声明&#xff0c;表信息 根据数…

get和post的区别,二者是幂等的吗?

一、什么是幂等 所谓幂等性通俗的将就是一次请求和多次请求同一个资源产生相同的副作用。 维基百科定义&#xff1a;幂等&#xff08;idempotent、idempotence&#xff09;是一个数学与计算机学概念&#xff0c;常见于抽象代数中。 在编程中一个幂等操作的特点是其任意多次执…

U-Mail邮件系统为用户提供更加安全的数据保护机制

据外媒报道&#xff0c;近日美国国家安全委员会泄露了其成员的近1万封电子邮件和密码&#xff0c;暴露了政府组织和大公司在内的2000家公司。其中包括美国国家航空航天局和特斯拉等。报道称该漏洞于3月7日被研究人员发现&#xff0c;通过该漏洞攻击者能够访问对web服务器操作至…

WordPress主题 7B2 PRO 5.4.2 免授权开心版源码

本资源提供给大家学习及参考研究借鉴美工之用&#xff0c;请勿用于商业和非法用途&#xff0c;无任何技术支持&#xff01; WordPress主题 7B2 PRO 5.4.2 免授权开心版源码 B2 PRO 5.4.2 最新免授权版不再需要改hosts&#xff0c;和正版一样上传安装就可以激活。 直接在Word…

重新夺回控制权!原创始人从Synk回购FossID,致力于解决开源许可合规风险

FossID 于 2022 年 9 月被其原始创始人从 Snyk, Inc. 重新收购。为什么 Snyk 在 2021 年收购了 FossID&#xff0c;又在 2022 年将其分拆&#xff0c;以及为什么 FossID 的创始人&#xff08;Oskar Swirtun 和 Jon Aldama&#xff09;后来又回购了该公司&#xff1f; 公司背景 …

YOLOv8_seg的训练、验证、预测及导出[实例分割实践篇]

实例分割数据集链接,还是和目标检测篇一样,从coco2017val数据集中挑出来person和surfboard两类:链接:百度网盘 请输入提取码 提取码:3xmm 1.实例分割数据划分及配置 1.1实例分割数据划分 从上面得到的数据还不能够直接训练,需要按照一定的比例划分训练集和验证集,并按…

Servlet的response对象

目录 HTTP响应报文协议 reponse继承体系 reponse的方法 响应行 public void setStatus(int sc) 响应头 public void setHeader(String name, String value) 响应体 public java.io.PrintWriter getWriter() public ServletOutputStream getOutputStream() 请求重定…

【GUI开发基础】

GUI开发基础 &#x1f31f;项目文件组成✨浅析Pro文件配置 &#x1f31f;Qt设计师&#x1f31f;剖析UI文件运行机制&#x1f31f;UI设计方式✨可视化UI设计✨代码化UI设计 &#x1f31f;项目文件组成 创建一个QtGUI项目&#xff1a; open QtCreator —> select Creator Pr…

You must call removeView() on the child‘s parent first.异常分析及解决

问题描述 对试图组件快速的左右滑动过程&#xff0c;发现某一张图片没加载出来&#xff0c;偶现crash 问题分析 view在上次已经是某个ParentView的child&#xff0c;然而现在又把它做为另外一个view的child&#xff0c;于是出现一个view有两个parent。所以就产生了这个错误。…

创新工具|AI革新内容营销:策略、工具与实施指南

探索如何利用人工智能&#xff08;AI&#xff09;提升内容营销策略&#xff0c;从SEO优化到个性化推荐。本指南详细介绍了11款顶尖AI工具&#xff0c;旨在帮助中国的中高级职场人士、创业家及创新精英高效地策划和生成引人入胜的内容&#xff0c;同时确保内容的专业性、权威性和…

2.OpenFeign 入门与使用

2.OpenFeign 入门与使用 1.什么是 OpenFeign?2.OpenFeign 基础使用2.1 添加依赖2.2 配置 Nacos 服务端信息2.3 项目中开启 OpenFeign2.4 编写 OpenFeign 调用代码2.5 调用 OpenFeign 接口代码 3.超时重试机制3.1 配置超时重试3.2 覆盖 Retryer 4.自定义超时重试机制4.1 自定义…

golang通过go-aci适配神通数据库

1. go-aci简介 go-aci是神通数据库基于ACI(兼容Oracle的OCI)开发的go语言开发接口&#xff0c;因此运行时需要依赖ACI驱动和ACI库的头文件。支持各种数据类型的读写、支持参数绑定、支持游标范围等操作。 2. Linux部署步骤 2.1. Go安装&#xff1a; 版本&#xff1a;1.9以上…

【从C++到Java一周速成】章节14:网络编程

章节14&#xff1a;网络编程 【1】网络编程的概念【2】IP地址与端口的概念【3】网络通信协议引入网络通信协议的分层 【3】Socket套接字【4】单向通信【5】双向通信 【1】网络编程的概念 把分布在不同地理区域的计算机与专门的外部设备用通信线路互联成一个规模大、功能强的网…

头歌openGauss-存储过程第2关:修改存储过程

任务描述 本关任务&#xff1a; 修改存储过程pro0101&#xff0c;并调用&#xff1b; --修改sel_course表中成绩<60的记录为成绩10&#xff0c;然后将计算机学院所有学生的选课成绩输出&#xff1b; --a、需要先删除存储过程pro0101&#xff1b; drop procedure if exists p…

LLM 入门与实践(三)Baichuan2 部署与分析

本文截取自20万字的《PyTorch实用教程》&#xff08;第二版&#xff09;&#xff0c;敬请关注&#xff1a;《Pytorch实用教程》&#xff08;第二版&#xff09;《Pytorch实用教程》&#xff08;第二版&#xff09;无论是零基础入门&#xff0c;还是CV、NLP、LLM项目应用&#x…