文章目录
- @[toc]
- 题目描述
- 样例输入输出与解释
- 样例1
- 样例2
- 提示
- Python实现
- 二分查找
- 划分数组
文章目录
- @[toc]
- 题目描述
- 样例输入输出与解释
- 样例1
- 样例2
- 提示
- Python实现
- 二分查找
- 划分数组
个人主页:丷从心·
系列专栏:LeetCode
刷题指南:LeetCode刷题指南
题目描述
- 给定两个大小分别为
m
和n
的正序(从小到大)数组nums1
和nums2
,请找出并返回这两个正序数组的中位数 - 算法的时间复杂度应该为
O(log (m+n))
样例输入输出与解释
样例1
- 输入:
nums1 = [1,3]
,nums2 = [2]
- 输出:
2.00000
- 解释:合并数组
= [1,2,3]
,中位数2
样例2
- 输入:
nums1 = [1,2]
,nums2 = [3,4]
- 输出:
2.50000
- 解释:合并数组
= [1,2,3,4]
,中位数(2 + 3) / 2 = 2.5
提示
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-10^6 <= nums1[i], nums2[i] <= 10^6
Python实现
二分查找
class Solution:def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:def getKthElement(k):index1, index2 = 0, 0while True:# 特殊情况if index1 == m:return nums2[index2 + k - 1]if index2 == n:return nums1[index1 + k - 1]if k == 1:return min(nums1[index1], nums2[index2])# 正常情况new_index1 = min(index1 + k // 2 - 1, m - 1)new_index2 = min(index2 + k // 2 - 1, n - 1)pivot1, pivot2 = nums1[new_index1], nums2[new_index2]if pivot1 <= pivot2:k -= new_index1 - index1 + 1index1 = new_index1 + 1else:k -= new_index2 - index2 + 1index2 = new_index2 + 1m, n = len(nums1), len(nums2)total_length = m + nif total_length % 2 == 1:return getKthElement((total_length + 1) // 2)else:return (getKthElement(total_length // 2) + getKthElement(total_length // 2 + 1)) / 2
划分数组
class Solution:def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:if len(nums1) > len(nums2):return self.findMedianSortedArrays(nums2, nums1)inf = 10 ** 6m, n = len(nums1), len(nums2)left, right = 0, mwhile left <= right:i = (left + right) // 2j = (m + n + 1) // 2 - inums_im1 = (-inf if i == 0 else nums1[i - 1])nums_i = (inf if i == m else nums1[i])nums_jm1 = (-inf if j == 0 else nums2[j - 1])nums_j = (inf if j == n else nums2[j])if nums_im1 <= nums_j:left = i + 1median1, median2 = max(nums_im1, nums_jm1), min(nums_i, nums_j)else:right = i - 1return (median1 + median2) / 2 if (m + n) % 2 == 0 else median1