AutoNeRF:Training Implicit Scene Representations with Autonomous Agents

论文概述

        《AutoNeRF》是由Pierre Marza等人撰写的一篇研究论文,旨在通过自主智能体收集数据来训练隐式场景表示(如神经辐射场,NeRF)。传统的NeRF训练通常需要人为的数据收集,而AutoNeRF则提出了一种使用自主智能体高效探索未知环境并利用这些经验自动构建隐式地图表示的方法。本文比较了不同的探索策略,包括手工设计的基于前沿的探索、端到端方法以及由高层规划器和低层路径跟随器组成的模块化方法

        这些模型在四种下游任务(经典视点渲染、地图重建、规划和姿态精炼)上的表现进行了评估,结果显示使用自主收集的数据训练NeRF在未见过的环境中仅通过一次探索即可完成建模,并且模块化的探索模型优于其他经典和端到端的基线方法。最后,论文展示了AutoNeRF在重建大规模场景方面的能力,使其成为执行场景特定适应的有用工具。

1. 引言 

  • 背景与动机

    • 随着计算机视觉和机器人技术的发展,隐式场景表示(如神经辐射场,NeRF)在生成新视角图像方面表现卓越。然而,训练这些模型需要大量的精心收集的数据。
    • 本文提出的AutoNeRF方法,通过自主智能体高效探索未知环境,自主收集数据,训练高质量的隐式场景表示模型。
  • 研究目标

    • 开发一种能自主收集数据的智能体,使其在探索未知环境时,能够自动构建NeRF模型。
    • 评估这些模型在不同下游任务(如视角渲染、地图重建、规划和姿态精炼)中的表现。

2. 相关工作

  • 神经场景表示

    • NeRF通过神经网络表示3D场景的结构,使用差分体积渲染损失从2D图像监督中重建3D场景。
    • 隐式表示技术在新视角合成、实时SLAM和语义增强方面表现出色。
  • 机器人领域的应用

    • 现有的隐式表示技术主要集中在离线场景的训练和推理,而在机器人领域的在线应用还需进一步探索。
  • 主动学习和自主场景探索

    • 传统方法大多依赖于静态数据集上的帧选择,本文提出的方法在大规模动态室内场景中进行主动探索,提升数据收集效率。

3. 方法 

整体框架 

图3:模块化探索策略

图3展示了AutoNeRF中使用的模块化探索策略框架。该框架主要由三个部分组成:全局策略、局部策略和NeRF训练过程。以下是对每个组成部分的详细描述。

1. 全局策略

全局策略负责探索过程中的高级决策,预测智能体应该导航到的中间航点。全局策略的输入是一组语义地图,包括占据信息、已探索区域和语义分割信息。该策略通过卷积神经网络实现,并使用强化学习技术,特别是近端策略优化(PPO)进行训练。

  • 输入:堆叠的语义地图(占据、探索、语义)。
  • 输出:中间航点。
  • 训练:强化学习(PPO)。
2. 局部策略

局部策略负责向全局策略提供的航点导航。它通过采取离散动作使智能体朝着航点移动(在本例中为25步)。这些动作包括向前移动和向左或向右转向。局部策略使用快速行进法(Fast Marching Method),一种经典的路径规划算法,高效地导航到目标航点。

  • 输入:中间航点。
  • 输出:离散导航动作(前进、左转、右转)。
  • 算法:快速行进法。
3. NeRF训练

当智能体通过探索收集到数据后,使用这些数据训练NeRF模型。收集的数据包括图像及其相应的相机位姿。NeRF模型训练旨在预测3D空间中任何点的颜色、密度和语义类别。训练过程包括沿着从相机发出的射线采样点,并优化预测输出使其与真实图像匹配,使用体积渲染技术进行优化。

  • 输入:探索过程中收集的图像和相机位姿。
  • 输出:3D场景表示(密度、颜色、语义)。
  • 训练:体积渲染优化。
其他组成部分
  • 奖励函数:使用不同的奖励函数来训练全局策略,关注诸如已探索区域覆盖或障碍物重要性等方面。
  • 评估:训练好的NeRF模型在几个下游任务上进行评估,包括新视角渲染、地图重建、规划和姿态精炼。

总结

图3概括了AutoNeRF框架的整体架构和流程。它展示了探索策略(全局和局部)如何协同工作进行导航和数据收集,以及如何利用这些数据训练NeRF模型进行3D场景重建。这种模块化的方法确保了高效的探索和高质量的3D建模,实现了通过自主收集的数据进行隐式场景表示的构建。

  • 3.1 任务描述

    • 智能体在未知场景中初始化,通过执行离散动作收集观测数据,这些数据用于训练NeRF模型。
    • 训练过程包括从智能体的视角收集图像和深度信息,并通过这些信息优化NeRF模型的参数。
  • 3.2 探索策略训练

    • 使用模块化探索策略,主要由全局策略负责探索方向的决策。
    • 奖励信号包括覆盖面积、障碍物覆盖、语义对象覆盖和视点覆盖等。
  • 3.3 具体实现

    • 模块化探索策略由高层规划器(负责整体探索策略)和低层路径跟随器(负责具体行动)组成。
    • 高层规划器使用强化学习训练,目标是最大化覆盖新区域的奖励信号。
    • 低层路径跟随器通过快速行进方法导航,确保智能体能高效到达目标位置。

 

4. 实验

  • 实验设置

    • 在不同测试场景中使用训练好的探索策略收集数据,并训练NeRF模型。
    • 评估这些模型在下游任务(如视角渲染、地图重建、规划和姿态精炼)中的表现。
  • 结果分析

    • 实验结果表明,AutoNeRF能够在仅一次探索中有效收集数据并训练NeRF模型。
    • 模块化探索策略在多项任务上表现优越,证明其在未知环境中自主探索和数据收集的有效性。

 

 

5. 结论

  • 总结

    • AutoNeRF展示了自主智能体在探索未知环境中的高效数据收集能力,能够利用这些数据训练高质量的隐式场景表示模型。
    • 这种方法在多种下游任务中表现出色,为机器人领域的场景特定适应提供了有力工具。
  • 未来工作

    • 进一步优化探索策略,提高智能体在复杂环境中的适应性。
    • 探索更多的下游任务应用,验证AutoNeRF在不同场景中的泛化能力。
论文细节补充
  • 训练数据集

    • 论文中使用了多种室内环境数据集进行训练和测试,以验证方法的有效性。
    • 包括模拟的房间布局和真实世界的室内场景。
  • 技术细节

    • NeRF模型的训练过程涉及优化损失函数,使得预测的颜色和密度与观测数据一致。
    • 强化学习策略的训练过程涉及多个探索步骤和奖励信号的设计,以引导智能体高效探索新区域。
  • 评估方法

    • 通过比较不同探索策略的覆盖面积和重建质量,评估智能体的探索效率。
    • 使用标准的视角渲染、地图重建、规划和姿态精炼任务,验证模型在下游任务中的性能。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/838594.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Boot | Spring Boot 中 自定义“用户退出控制“、获取“登录用户信息“

目录: 一、SpringBoot 中 自定义 "用户授权管理" ( 总体内容介绍 ) :二、 自定义 "用户退出控制" ( 通过 "HttpSecurity类" 的 logout( )方法来实现 "自定义用户用户登录控制" ) :1.基础项目文件准备2.实现 "自定义身份认证"…

生产 Dockerfile 构建 nodejs 前端镜像打包内存溢出

错误:FATAL ERROR: Ineffective mark-compacts near heap limit Allocation failed - JavaScript heap out of memory 该错误是在进行生产环境通过 Dockerfile 构建前端项目镜像时抛出的。 解决办法就是修改 node 内存限制: 从 Node.js v8.0 开始&…

springboot005学生心理咨询评估系统

springboot005学生心理咨询评估系统 亲测完美运行带论文:获取源码,私信评论或者v:niliuapp 运行视频 包含的文件列表(含论文) 数据库脚本:db.sql其他文件:ppt.ppt论文:开题.doc论文&#xf…

WT99C262-SG LoRa开发板使用教程

WT99C262-SG模块是全新一代的Wi-FiBLELoRa无线扩频模块,基于启明云端WTLRC262-SG系列模组设计开发的新一代LoRa扩频芯片方案设计的无线串口模块。具有多种传输方式,LoRa扩频技术,且模组大部分管脚均已引出至两侧排针,开发人员可根…

基于Springboot的高校电动车租赁系统。Javaee项目,springboot项目。

演示视频: 基于Springboot的高校电动车租赁系统。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构,通过Spring Spri…

(二刷)代码随想录第8天|344.反转字符串● 541. 反转字符串II

344.反转字符串 344. 反转字符串 - 力扣(LeetCode) 代码随想录 (programmercarl.com) 编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组 s 的形式给出。 不要给另外的数组分配额外的空间,你必须原地修改输入数…

音频筑基:200字说清声和音的区别(Sound/Audio/Music/Voice/Speech辨析)

音频筑基:200字说清声和音的区别(Sound/Audio/Music/Voice/Speech辨析) 音频筑基:200字说清声和音的区别 音频筑基:200字说清声和音的区别(Sound/Audio/Music/Voice/Speech辨析) 梳理如下: 声音 声(Sound) 广义:机械波…

【DevOps】linux 的网络绑定 (Bonding)应用

目录 一、什么是网络绑定 1、提高带宽 2、增加冗余和高可用性 3、 负载均衡 4、 故障转移 5、 多路径传输 二、主要模式 三、配置步骤 1、 安装必要的软件包 2、 加载 Bonding 内核模块 3、 配置网络接口 4、重启网络服务 四、测试和监控 Bonding 一、什么是网络绑…

爬虫界的“闪电侠”:异步爬虫与分布式系统的实战秘籍

Hi,我是阿佑,前文给大家讲了,如何做一个合法“采蜜”的蜜蜂,有了这么个自保的能力后,阿佑今天就将和大家踏入 —— 异步爬虫 的大门! 异步爬虫大法 1. 引言1.1 爬虫框架的价值:效率与复杂度管理…

卷轴分红商城模式:适用于多种的商业营销模式

卷轴分红商城模式是一种基于区块链技术的去中心化积分商城系统,通过智能合约和数字资产分红实现积分流通和价值回馈,适用于多种场景。 什么是卷轴分红商城模式: 这是一个去中心化的积分商城系统,消费者在商城消费时,可…

番外篇 | 一文读懂卷积神经网络(CNN)的基础概念及原理

前言:Hello大家好,我是小哥谈。卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,主要用于图像识别和计算机视觉任务。本文旨在对卷积神经网络进行详细的讲解,从基本原理到实际应用,帮助读者全面了解CNN的工作原理、优势和基本组成等,以及其在现实生…

异步编程CompletableFuture总结

文章目录 1. 简介:2. 比较1、传统方式2、使用CompletableFuture:异步执行返回值 3、组合处理:anyOfallof : 4. 异步回调:thenAcceptthenApplywhenComplete等同于 thenAccepthandel()等同于thenApply 5. 常用方法:1、su…

Python——IO编程

IO在计算机中指Input/Output,也就是输入和输出。由于程序和运行时数据是在内存中驻留,由CPU这个超快的计算核心来执行,涉及到数据交换的地方,通常是磁盘、网络等,就需要IO接口。 比如你打开浏览器,访问新浪…

Linux查看进程命令ps和top

Linux 是一种自由和开放源代码的操作系统,它的使用在全球范围内非常广泛。在 Linux 中,进程是操作系统中最重要的组成部分之一,它代表了正在运行的程序。了解如何查看正在运行的进程是非常重要的,因为它可以帮助你了解系统的运行状…

ubuntu linux安装了中文字体以后,无法选择中文为默认字体

有一些以ubuntu为基础的发行版本,中文支持不是很完善,可以参考以下的方法试试: 在Ubuntu 22.04系统中安装中文字体,你可以按照以下步骤操作: 1. **安装中文语言包**:首先确保系统安装了中文语言包&#x…

mediasoup源码分析(三)--日志模块

概述 mediasoup是一个基于WebRTC的sfu服务器框架,它允许开发人员构建实时通信应用程序。它包含许多模块和组件,其中之一是日志模块。 mediasoup的日志模块用于记录系统的运行日志和调试信息。它可以帮助开发人员在开发和调试过程中跟踪和分析问题。日志…

【scikit-learn】DBSCAN基于密度聚类ML模型实战及经验总结(更新中)

1.一直以来想写下基于scikit-learn训练AI算法的系列文章,作为较火的机器学习框架,也是日常项目开发中常用的一款工具,最近刚好挤时间梳理、总结下这块儿的知识体系。 2.熟悉、梳理、总结下scikit-learn框架DBSCAN密度聚类机器学习模型相关知识…

Java的NIO提供了非阻塞I/O机制的包

Java的NIO(New I/O)是一种提供了替代性、非阻塞I/O机制的包。它的引入主要是为了解决传统I/O机制在处理大量连接或大数据量时所带来的性能瓶颈和可扩展性问题。下面详细介绍NIO的一些关键概念和特性: 1.通道(Channels&#xff09…

管理Kubernetes平台的工具Rancher

目录 一、特性二、使用方法2.1、安装 Rancher2.2、创建 Kubernetes 集群2.3、管理和部署应用 Rancher 是一个开源的容器管理平台,它提供了企业级的 Kubernetes 管理解决方案,使得部署和管理 Kubernetes 集群变得更加简单。Rancher 提供了一个统一的控制面…

使用pyautogui制作点击器怎么输入中文

通过咨询国内一些大厂的问答软件,发现基本都是让我们使用pinyin库来输入中文,我使用了一下,很难达到我的需求,我就发现可以使用复制、粘贴这两个快捷键来达到这个效果。 它们给的代码基本都是这个模式,但是拼音和需要的…