深度学习入门到放弃系列 - 阿里云人工智能平台PAI部署开源大模型chatglm3

通过深度学习入门到放弃系列 - 魔搭社区完成开源大模型部署调用 ,大概掌握了开源模型的部署调用,但是魔搭社区有一个弊端,关闭实例后数据基本上就丢了,本地的电脑无法满足大模型的配置,就需要去租用一些高性价比的GPU机器长期运行,起码数据和环境能长期存在。以我在阿里云人工智能平台 PAI部署和大家分享一下经验,其他平台自行尝试、选择。

免费算力平台

  • 阿里云人工智能平台 PAI
  • 阿里天池实验室
  • Kaggle平台
  • Colab(需要梯子)

付费算力平台

  • AutoDL
  • Gpushare Cloud
  • Featurize
  • AnyGPU

阿里云人工智能平台 PAI试用申请流程

我选择的是阿里云人工智能平台 PAI平台的免费算力平台,免费使用三个月,截止目前还很好抢,每天500份传送门。同时,也推荐一些其他的算力平台给大家自行选择。

在这里插入图片描述
建议选交互式建模PAI-DSW

在这里插入图片描述

立即试用!

在这里插入图片描述
在这里插入图片描述

创建规格的时候千万注意选择GPU-支持资源包抵扣的这种。

在这里插入图片描述

创建实例!

在这里插入图片描述

启动实例!

在这里插入图片描述
在这里插入图片描述打开后界面和魔搭社区就比较类似了,有命令行、Notebook等。

在这里插入图片描述

环境搭建

  1. 新建账号:进来就已经是root账户了,需要创建一个用户。
# 添加一个新用户(如用户名为csdn)遇到执行
adduser csdn 
# 将用户添加到 sudo 组
adduser csdn sudo 
  1. 进来以后发现ll、source等命令都不能用,需要先把dash改成bash命令,参考source: not found问题处理。解决完重新打开命令行以后就是我现在的界面。

在这里插入图片描述

  1. 更换国内软件源
cd /ect/apt# 备份sources.list,以免出问题
sudo cp sources.list sources.list.backupvim sources.list# 复制到sources.list文件末尾
deb https://mirrors.ustc.edu.cn/ubuntu/ focal main restricted universe multiverse
deb https://mirrors.ustc.edu.cn/ubuntu/ focal-updates main restricted universe multiverse
deb https://mirrors.ustc.edu.cn/ubuntu/ focal-backports main restricted universe multiverse
deb https://mirrors.ustc.edu.cn/ubuntu/ focal-security main restricted universe multiverse
  1. 安装vim编辑器、git
# 使用vi可跳过
sudo apt-get install vimsudo apt-get install git
  1. 系统软件更新
# 更新软件包列表
sudo apt update
# 执行更新命令
sudo apt upgrade
  1. 安装anaconda
# 下载安装包
wget https://repo.anaconda.com/archive/Anaconda3-2023.09-0-Linux-x86_64.sh
# 执行安装命令
bash Anaconda3-2023.09.0-Linux-x86_64.sh

直到出现 yes no 选项,选择yes,再然后遇到路径/root/anaconda3,然后按“Enter”键使用Anaconda的默认安装位置/root/anaconda3下,然后等待安装结束。

  1. 配置环境变量
# 印象中不创建账号好像就没有bashrc的文件
vim ~/.bashrc
# 末尾添加anaconda3所在路径,和第六步路径一致
export PATH=/root/anaconda3/bin:$PATH
# 使环境变量的修改立即生效
source ~/.bashrc
  1. 安装之前需要配置一下conda,都说用国内镜像源,我试了没用
# 我用的这种方法
conda install -n base conda-libmamba-solver
# 设置全局使用libmamba
conda config --set solver libmamba
  1. conda创建虚拟环境
conda create --n chatglm3_test python=3.11
conda activate chatglm3_test
# 如果中间报错找不到activate命令,使用下面的命令试试
source /root/anaconda3/etc/profile.d/conda.sh
  1. 安装pytorch等依赖

nvidia-msi查看目前的cuda版本来选择对应的pytorch

在这里插入图片描述

# CUDA 11.8 根据我自己的版本我选择第一个就好了
conda install pytorch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 pytorch-cuda=11.8 -c pytorch -c nvidia
# CUDA 12.1
conda install pytorch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 pytorch-cuda=12.1 -c pytorch -c nvidia
# CPU Only
conda install pytorch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 cpuonly -c pytorch
  1. 验证GPU版本的PyTorch
import torch
print(torch.cuda.is_available()) 

如下图说明安装成功。

在这里插入图片描述
12. 下载ChatGLM3项目文件

git下载ChatGLM3项目文件时可能会出现Permission denied,参考解决办法 git报错Permission denied的解决方法

# 创建文件夹
mkdir /opt/chatglm3
# 切换到新建的目录下
cd /opt/chatglm3
# 下载ChatGLM3
git clone git@github.com:THUDM/ChatGLM3.git
# 升级pip版本
python -m pip install --upgrade pip 
  1. 安装ChatGLM运行的项目依赖
cd /opt/chatglm3/ChatGLM3
# 安装依赖
pip install -r requirements.txt
  1. 安装模型权重文件

Git Large File Storage(Git LFS)是一种用于处理大文件的工具,在 Hugging Face等平台下载大模型时,通常需要安装 Git LFS,主要的原因是:Git 本身并不擅长处理大型文件,因为在 Git 中,每次我们提交一个文件,它的完整内容都会被保存在 Git 仓库的历史记录中。但对于非常大的文件,这种方式会导致仓库变得庞大而且低效。而 Git LFS, 就不会直接将它们的内容存储在仓库中。相反,它存储了一个轻量级的“指针”文件,它本身非常小,它包含了关于大型文件的信息(如其在服务器上的位置),但不包含文件的实际内容。当我们需要访问或下载这个大型文件时,Git LFS 会根据这个指针去下载真正的文件内容
实际的大文件存储在一个单独的服务器上,而不是在 Git 仓库的历史记录中。所以如果不安装 Git LFS 而直接从 Hugging Face 或其他支持 LFS 的仓库下载大型文件,通常只会下载到一个包含指向实际文件的指针的小文件,而不是文件本身。

# 安装git-lfs
sudo apt-get install git-lfs
# 初始化
git lfs install
# 魔搭平台下载模型权重文件,Hugging Face太慢了
git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git

目录结构如下图所示,chatglm3-6b目录为模型权重文件
在这里插入图片描述

  1. 运行ChatGLM3-6B模型

运行前需要改一下模型权重文件的路径,我们提前下载,改成本地的路径,否则会重新下载。

在这里插入图片描述

在basic_demo目录下运行cli_demo.py文件,能正常对话说明大功告成了!千万注意要sudo运行哈!

在这里插入图片描述

遇到的问题

问题一:Ubuntu下shell执行source命令报source: not found问题处理

问题二:conda: error: argument COMMAND: invalid choice: ‘activate‘

在这里插入图片描述

问题三:git报错Permission denied

在这里插入图片描述

问题四:conda下载文件慢

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/837713.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

空格探究 空格ASCII码值不一样

背景 今天修改数据库字段发现修改无效,最后发现是空格引起的,数据库中空格有一些奇怪的空格 获取ASCII码,发现不一样 public static void main(String[] args) {String str1 " ";String str2 " ";System.out.println((int)str1.charAt(0) );//13228Syste…

神经网络中的误差反向传播(Backpropagation)方法理解

想象一下,神经网络就像是一个复杂的迷宫,里面有许多交叉路口(神经元),每个路口都有指示牌告诉你往哪个方向走(权重),而你的目标是找到从入口到出口的最佳路径,使得从起点…

优选算法——双指针2

题目一——有效三角形的个数 思路 先审题 举个例子,下面一个序列可分成4个三元组 然后我们论证哪个可以组成三角形即可 判断三个数能不能组成三角形:任意两边之和大于第三边 注意第一个和第四个,有人说,这不是两个相同的吗&#…

原生小程序开发如何使用 tailwindcss

原生小程序开发如何使用 tailwindcss 原生小程序开发如何使用 tailwindcss 前言什么是 weapp-tailwindcss ?0. 准备环境以及小程序项目1. 安装与配置 tailwindcss 0. 使用包管理器安装 tailwindcss1. 在项目目录下创建 postcss.config.js 并注册 tailwindcss2. 配置 tailwind…

python中try/except/else/finally块的一些例子

Python中的try/except/else/finally块可以用来捕获和处理异常,确保程序的健壮性。以下是一些使用这些块的例子: ### 基本异常捕获 python try: # 尝试读取文件 with open(example.txt, r) as file: data file.read() except FileNotF…

【强训笔记】day22

NO.1 思路&#xff1a;将情况全部枚举出来。 代码实现&#xff1a; #include <iostream> #include<string> using namespace std;string a,b; int main() {cin>>a>>b;int ma.size(),nb.size();int retm;for(int i0;i<n-m;i){int tmp0;for(int j…

【UnityShader入门精要学习笔记】第十二章 屏幕后处理效果

本系列为作者学习UnityShader入门精要而作的笔记&#xff0c;内容将包括&#xff1a; 书本中句子照抄 个人批注项目源码一堆新手会犯的错误潜在的太监断更&#xff0c;有始无终 我的GitHub仓库 总之适用于同样开始学习Shader的同学们进行有取舍的参考。 文章目录 建立一个基…

如何在Python中加载机器学习数据

如何在Python中加载机器学习数据 在开始机器学习项目之前&#xff0c;您必须能够加载数据。 机器学习数据最常见的格式是CSV文件。在Python中加载CSV文件的方法有很多。 加载CSV数据时的注意事项 1.你的数据有文件头吗&#xff1f;如果是这样的话&#xff0c;这可以帮助自动…

上位机图像处理和嵌入式模块部署(树莓派4b的提高版)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 目前人工智能非常火&#xff0c;但是人工智能需要极高的算力和海量的数据&#xff0c;因此相关的关联公司非常吃香&#xff0c;nvidia就是提供算力…

【基本数据结构】链表

文章目录 前言链表简介头节点与尾节点特性 分类单向链表双向链表循环链表 单链表基本操作定义并初始化单链表读取节点插入节点删除节点修改节点 参考资料写在最后 前言 本系列专注更新基本数据结构&#xff0c;现有以下文章&#xff1a; 【算法与数据结构】数组. 【算法与数…

互联网搞钱大变天,这有几条活路

互联网搞钱大变天&#xff0c;这有几条活路 靠互联网营生的各位同胞&#xff0c;你们有没有想过这样一个问题&#xff1a;假如有一天你的自媒体账号全被封了&#xff0c;你手上的操作项目全都黄了&#xff0c;你会怎么办&#xff1f; 就封号这事在这几年相信大家都不会陌生&a…

【LLM第五篇】名词解释:prompt

1.是什么 提示工程&#xff08;Prompt Engineering&#xff09;是一门较新的学科&#xff0c;关注提示词开发和优化&#xff0c;帮助用户将大语言模型&#xff08;Large Language Model, LLM&#xff09;用于各场景和研究领域。 掌握了提示工程相关技能将有助于用户更好地了解…

深入了解 npm:Node.js 包管理工具详解

文章目录 一、npm 基本概念1.1 什么是 npm&#xff1f;1.2 package.json 文件 二、npm 常用命令2.1 初始化项目2.2 安装依赖2.2.1 安装单个包2.2.2 全局安装包2.2.3 安装开发依赖 2.3 移除依赖2.4 更新依赖2.5 查看已安装的包2.6 发布包 三、npm 高级用法3.1 使用 npm scripts3…

JETBRAINS IDES 分享一个2099通用试用码!CLion 2024 版 ,支持一键升级

文章目录 废话不多说上教程&#xff1a;&#xff08;动画教程 图文教程&#xff09;一、动画教程激活 与 升级&#xff08;至最新版本&#xff09; 二、图文教程 &#xff08;推荐&#xff09;Stage 1.下载安装 toolbox-app&#xff08;全家桶管理工具&#xff09;Stage 2 : 下…

nestJs中跨库查询

app.module.ts中配置 模块的module中 注意实体类在写的时候和数据库中的表名一样 service中使用一下

【JS】call和 apply函数的详解

JavaScript 中 call() 和 apply() 函数的详解 在JavaScript中&#xff0c;call()和apply()都是非常重要的方法&#xff0c;用于调用函数时指定函数体内的this的值&#xff0c;从而实现不同对象之间的方法共享。尽管它们的功能非常相似&#xff0c;但在实际使用中各有其优势和特…

生产环境磁盘变更方案

datanode磁盘扩容(1人天) 扩容磁盘 1.1 扩容前检查、新盘初始化 确定block副本统计正常,无丢块,无under-replicated 块 后台执行命令检查 hdfs dfs fsck / 无异常可进行以下步骤进行磁盘扩容 新盘初始化 ##格式化新盘,命令示例: mkfs.xfs /dev/sdc##挂载新盘,命令示…

【AI学习】聊两句昨夜OpenAI的GPT-4o

蹭个热点&#xff0c;聊两句昨夜的大事件——OpenAI发布GPT-4o&#xff0c;我看到和想到的一点东西。 首先是端到端方法&#xff0c;前面关于深度学习的文章&#xff0c;对端到端的重要性做了一些学习&#xff0c;对端到端这个概念有了一些理解。正如Richard Sutton在《苦涩的…

大数据Scala教程从入门到精通第六篇:Scala源文件编写和运行

一&#xff1a;Scala源文件编写和运行 1&#xff1a;源代码比较 public class HelloJava{public static void main(String[] args){System.out.println("hello scala")} } object HelloScala{//用于声明方法 入参是一个String类型的数组。返回值类型为空def main…

【javascript】如何通过hook函数定位到原函数调用位置

思路&#xff1a;通过debugger找到hook替换函数的位置&#xff0c;再通过调用堆栈找到是谁调用了它&#xff0c;最后悬浮定位找到原函数代码位置。 对原方法重新赋值&#xff1a; var stringify JSON.stringify; JSON.stringify function (params) {if (params["paylo…