各种chain的介绍
-
串联式编排调用链:SequentialChain
- 流水线 胶水代码逻辑处理
- 具备编排逻辑 串行 one by one的调用
- 上一个chain的输出 作为 下一个chain的输入
-
超长文本的转换 Transform Chain
- pdf文件处理
- 提供了套壳的能力 将python处理字符串的能力 套用进来 完成数据的格式化处理
-
实现条件判断的路由链:RouterChain
- 复杂逻辑 条件判断
- 组合routerchain 目标链 通过条件判断 选择对应的目标链进行调用
Sequential Chain
串联式调用语言模型(将一个调用的输出作为另一个调用的输入)。
顺序链(Sequential Chain )允许用户连接多个链并将它们组合成执行特定场景的流水线(Pipeline)。有两种类型的顺序链:
- SimpleSequentialChain:最简单形式的顺序链,每个步骤都具有单一输入/输出,并且一个步骤的输出是下一个步骤的输入。
- SequentialChain:更通用形式的顺序链,允许多个输入/输出。
示例- 使用 SimpleSequentialChain 实现戏剧摘要和评论(单输入/单输出
chain1 定义 synopsis_chain
这是一个 LLMChain,用于根据剧目的标题撰写简介
python
复制代码
# 这是一个 LLMChain,用于根据剧目的标题撰写简介。llm = OpenAI(temperature=0.7, max_tokens=1000)template = """你是一位剧作家。根据戏剧的标题,你的任务是为该标题写一个简介。标题:{title}
剧作家:以下是对上述戏剧的简介:"""prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template)
chain2 定义review chain
这是一个LLMChain,用于根据剧情简介撰写一篇戏剧评论。
python
复制代码
# 这是一个LLMChain,用于根据剧情简介撰写一篇戏剧评论。
# llm = OpenAI(temperature=0.7, max_tokens=1000)
template = """你是《纽约时报》的戏剧评论家。根据剧情简介,你的工作是为该剧撰写一篇评论。剧情简介:
{synopsis}以下是来自《纽约时报》戏剧评论家对上述剧目的评论:"""prompt_template = PromptTemplate(input_variables=["synopsis"], template=template)
review_chain = LLMChain(llm=llm, prompt=prompt_template)
SimpleSequentialChain 完整流程图
完整代码示例
ini
复制代码
import os
from langchain_openai import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChainfrom langchain.chains import SimpleSequentialChainapi_key = 'sk-xxx'
os.environ["OPENAI_API_KEY"] = api_keyserp_api = 'xxx'
os.environ["SERPAPI_API_KEY"] = serp_apillm = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0.7, max_tokens=1000)def get_synopsis_chain():# 这是一个 LLMChain,用于根据剧目的标题撰写简介。template = """你是一位剧作家。根据戏剧的标题,你的任务是为该标题写一个简介。标题:{title}剧作家:以下是对上述戏剧的简介:"""prompt_template = PromptTemplate(input_variables=["title"], template=template)synopsis_chain = LLMChain(llm=llm, prompt=prompt_template)return synopsis_chaindef get_review_chain():# 这是一个LLMChain,用于根据剧情简介撰写一篇戏剧评论。# llm = OpenAI(temperature=0.7, max_tokens=1000)template = """你是《纽约时报》的戏剧评论家。根据剧情简介,你的工作是为该剧撰写一篇评论。剧情简介:{synopsis}以下是来自《纽约时报》戏剧评论家对上述剧目的评论:"""prompt_template = PromptTemplate(input_variables=["synopsis"], template=template)review_chain = LLMChain(llm=llm, prompt=prompt_template)return review_chaindef main():# 这是一个SimpleSequentialChain,按顺序运行这两个链synopsis_chain = get_synopsis_chain()review_chain = get_review_chain()overall_chain = SimpleSequentialChain(chains=[synopsis_chain, review_chain], verbose=True)review = overall_chain.run("三体人不是无法战胜的")print(review)if __name__ == "__main__":main()
输出内容
示例-使用 SequentialChain 实现戏剧摘要和评论(多输入/多输出)
python
复制代码
import os
from langchain_openai import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChainfrom langchain.chains import SequentialChainapi_key = 'sk-xx'
os.environ["OPENAI_API_KEY"] = api_keyserp_api = 'xxx'
os.environ["SERPAPI_API_KEY"] = serp_apillm = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0.7, max_tokens=1000)def get_synopsis_chain():# # 这是一个 LLMChain,根据剧名和设定的时代来撰写剧情简介。template = """你是一位剧作家。根据戏剧的标题和设定的时代,你的任务是为该标题写一个简介。标题:{title}时代:{era}剧作家:以下是对上述戏剧的简介:"""prompt_template = PromptTemplate(input_variables=["title", "era"], template=template)# output_keysynopsis_chain = LLMChain(llm=llm, prompt=prompt_template, output_key="synopsis", verbose=True)return synopsis_chaindef get_review_chain():# 这是一个LLMChain,用于根据剧情简介撰写一篇戏剧评论。template = """你是《纽约时报》的戏剧评论家。根据该剧的剧情简介,你需要撰写一篇关于该剧的评论。剧情简介:{synopsis}来自《纽约时报》戏剧评论家对上述剧目的评价:"""prompt_template = PromptTemplate(input_variables=["synopsis"], template=template)review_chain = LLMChain(llm=llm, prompt=prompt_template, output_key="review", verbose=True)return review_chaindef main():# 这是一个SimpleSequentialChain,按顺序运行这两个链synopsis_chain = get_synopsis_chain()review_chain = get_review_chain()m_overall_chain = SequentialChain(chains=[synopsis_chain, review_chain],input_variables=["era", "title"],# Here we return multiple variablesoutput_variables=["synopsis", "review"],verbose=True)result = m_overall_chain({"title":"三体人不是无法战胜的", "era": "二十一世纪的新中国"})print(result)if __name__ == "__main__":main()
输出结果
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓