关于我转生从零开始学C++这件事:获得神器

❀❀❀ 文章由@不准备秃的大伟原创 ❀❀❀

♪♪♪ 若有转载,请联系博主哦~ ♪♪♪

❤❤❤ 致力学好编程的宝藏博主,代码兴国!❤❤❤

        几天不见 ,甚是想念!哈咯大家好又是我大伟,五一的假期已经结束,所以我们要静下心来,准备一下端午节和暑假。(^▽^ ) 啊不对,是好好学习啦!那么废话不多说,我们开始今天的内容:C++的内存管理。

        C/C++内存分布:

        首先我们来小小做一个题目,如下:

int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{static int staticVar = 1;int localVar = 1;int num1[10] = { 1, 2, 3, 4 };char char2[] = "abcd";const char* pChar3 = "abcd";int* ptr1 = (int*)malloc(sizeof(int) * 4);int* ptr2 = (int*)calloc(4, sizeof(int));int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);free(ptr1);free(ptr3);
}
1. 选择题:
选项 : A.栈  B.堆  C.数据段(静态区)  D.代码段(常量区)
globalVar在哪里?____   staticGlobalVar在哪里?____
staticVar在哪里?____   localVar在哪里?____
num1 在哪里?____char2在哪里?____ * char2在哪里?___
pChar3在哪里?____ * pChar3在哪里?____
ptr1在哪里?____ * ptr1在哪里?____
2. 填空题:
sizeof(num1) = ____;
sizeof(char2) = ____;      strlen(char2) = ____;
sizeof(pChar3) = ____;     strlen(pChar3) = ____;
sizeof(ptr1) = ____;
3. sizeof 和 strlen 区别?

        铁子们可以看看这题目的答案是什么?顺便考察考察自己的C语言基础牢固不牢固<(* ̄▽ ̄*)/。

        怎么样,都心里有答案了吗?我们先来看看第一题前半部分:首先是一个全局变量,那么他在静态区,答案是C;接着是一个静态全局变量,同样在静态区,还是C;然后是一个静态成员变量,在静态区,C;接着是一个整形变量,他是在栈上的,所以是A;然后是一个整形数组,同样在栈上,答案是A。        

        所以第一题前半部分答案是C C C A A。你做对了吗?

        那么我们继续看第一题的后半部分:首先是个字符数组,处在栈上,选A;接着是指针,处在静态区,选C;然后是个被const修饰的字符数组,在静态区,选C;同样是被const修饰的,在静态区,选C;然后是动态内存开辟的空间,在堆上,选B;同样的是被动态内存开辟的,在堆上。

        所以答案是:A C C C B B

        OK,那我们最后来看一下有关sizeof和strlen的区别,即题目二:首先是开了十个空间的整形数组,大小为40;然后是存了五个内容的字符数组(包括'\0'),大小为5;而其长度为4(遇到'\0'结束);然后是一个指针的大小,在64位下大小为8;接着是指针指向内容的长度,为4;最后是指针,大小为8.

        所以答案是40 5 4 8 4 8。铁汁们都对了吗?

        那大伟最后再简单说一下sizeof和strlen的区别:

  • sizeof 是一个运算符,用于获取对象或类型的大小(以字节为单位),它在编译时计算。
  • strlen 是一个函数,用于计算以 null 结尾的字符串的长度(不包括 null 终止符),它在运行时遍历字符串直到找到 null 终止符。

         好的,题目做完了,我们最后再来看一下内存区域的一些分布吧:5e50249451864398af9701016952afdb.png

        说明:

1. 栈又叫堆栈--非静态局部变量/函数参数/返回值等等,栈是向下增长的。

2. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口 创建共享共享内存,做进程间通信。(Linux课程如果没学到这块,现在只需要了解一下)

3. 堆用于程序运行时动态内存分配,堆是可以上增长的。

4. 数据段--存储全局数据和静态数据。 5. 代码段--可执行的代码/只读常量。 

        C语言中动态内存管理方式:malloc/calloc/realloc/free:

        我们在学C语言的时候,一般都是用malloc/calloc/realloc/free来创建和释放空间,那我们是不是很懂啊?是嘛,那来看一段代码看看:

void Test()
{int* p1 = (int*)malloc(sizeof(int));free(p1);// 1.malloc/calloc/realloc的区别是什么?int* p2 = (int*)calloc(4, sizeof(int));int* p3 = (int*)realloc(p2, sizeof(int) * 10);// 这里需要free(p2)吗?free(p3);
}

                铁汁们是怎么认为的呢?哈哈,答案是不需要呢,为什么呢?这时候就是realloc的作用了:扩容,我们p3将p2的空间进行扩容,然后释放了p3的空间,那我们是不是同时也释放了p2的空间呢?想一想(╯ε╰)

        C++内存管理方式:

        C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因此本贾明博士在C++中又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。

         new/delete操作内置类型:

        废话不多说,我们先来看一段代码:

void Test()
{// 动态申请一个int类型的空间int* ptr4 = new int;// 动态申请一个int类型的空间并初始化为10int* ptr5 = new int(10);// 动态申请10个int类型的空间int* ptr6 = new int[3];delete ptr4;delete ptr5;delete[] ptr6;
}

        如下: 

        0d38474ace0840df858db30aab057f6c.png

        注意:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用 new[]和delete[],注意:匹配起来使用。 

        new和delete操作自定义类型:

class A
{
public:A(int a = 0): _a(a){cout << "A():" << this << endl;}~A(){cout << "~A():" << this << endl;}
private:int _a;
};
int main()
{// new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间还会调用构造函数和析构函数A* p1 = (A*)malloc(sizeof(A));A* p2 = new A(1);free(p1);delete p2;// 内置类型是几乎是一样的int* p3 = (int*)malloc(sizeof(int)); // Cint* p4 = new int;free(p3);delete p4;A* p5 = (A*)malloc(sizeof(A) * 10);A* p6 = new A[10];free(p5);delete[] p6;return 0;
}

        注意:在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,而malloc与 free不会。

        operator new与operator delete函数:

        operator new与operator delete函数:

        new和delete是用户进行动态内存申请和释放的操作符,operator new 和operator delete是 系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过 operator delete全局函数来释放空间。

        operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间 失败,尝试执行空间不足应对措施,如果改应对措施用户设置了,则继续申请,否则抛异常。我们接下来看看operate new和operate delete的内置函数:

void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{// try to allocate size bytesvoid* p;while ((p = malloc(size)) == 0)if (_callnewh(size) == 0){// report no memory// 如果申请内存失败了,这里会抛出bad_alloc 类型异常static const std::bad_alloc nomem;_RAISE(nomem);}return (p);
}
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void* pUserData)
{_CrtMemBlockHeader* pHead;RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));if (pUserData == NULL)return;_mlock(_HEAP_LOCK);  /* block other threads */__TRY/* get a pointer to memory block header */pHead = pHdr(pUserData);/* verify block type */_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));_free_dbg(pUserData, pHead->nBlockUse);__FINALLY_munlock(_HEAP_LOCK);  /* release other threads */__END_TRY_FINALLYreturn;
}
/*
free的实现
*/
#define   free(p)               _free_dbg(p, _NORMAL_BLOCK)

        通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果 malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施 就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。

        new和delete的实现原理:

        内置类型:

        如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是: new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。

        自定义类型:

        ·new的原理:

1. 调用operator new函数申请空间

2. 在申请的空间上执行构造函数,完成对象的构造

        ·delete的原理:

1. 在空间上执行析构函数,完成对象中资源的清理工作 

2. 调用operator delete函数释放对象的空间

        ·new T[N]的原理:

1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请

2. 在申请的空间上执行N次构造函数

        ·delete[]的原理:

1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理

2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间

        常见面试题:

        malloc/free和new/delete的区别:

        malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地方是: 

1. malloc和free是函数,new和delete是操作符

2. malloc申请的空间不会初始化,new可以初始化

3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可,如果是多个对象,[]中指定对象个数即可

4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型

5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需 要捕获异常

6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new 在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理

        内存泄漏:

        什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏并不是指内存在物理上的消失,而是应用程序分配某段内存后,因为设计错误,失去了对该段内存的控制,因而造成了内存的浪费。 具体来说就是malloc后忘记free了,new后忘记delete了。

        内存泄漏的危害:长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现内存泄漏会导致响应越来越慢,最终卡死。

        如何避免内存泄漏:

        1. 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps:这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智 能指针来管理才有保证。

2. 采用RAII思想或者智能指针来管理资源。

3. 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。

4. 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵。

        总结一下:内存泄漏非常常见,解决方案分为两种:1、事前预防型。如智能指针等。2、事后查错型。如泄漏检测工具。  

        OK,那么今天的博客就到此为止了,我们接下来就要学习模板了,这是进入C++最重要的一个节点,所以,敬请期待吧~!最后感谢大家的一直的支持!(╯ε╰) a7e1bf8356054b99a4658eaa615da88e.png

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/836391.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

超绝git

我们应该学会使用超绝git了&#xff0c;首先&#xff0c;什么是git&#xff1f; git是超绝版本控制器&#xff08;去中心化的分布式系统&#xff09;&#xff0c;什么又是版本控制&#xff0c;git和Gitee又有什么牵扯&#xff1f; git安装 这是安装git&#xff1a; yum ins…

Kexp 动态展示 k8s 资源对象依赖关系

kexp[1] 旨在以可视化的方式帮助用户理解和探索 Kubernetes 的能力。 适用场景&#xff1a; 学习和探索 Kubernetes 的功能。 应用开发&#xff0c;提供每个应用的对象图预设。 控制器和操作器的开发&#xff0c;支持动态对象图。 即将推出类似 Postman 的 Kubernetes API …

Python深度学习基于Tensorflow(9)注意力机制

文章目录 注意力机制是怎么工作的注意力机制的类型 构建Transformer模型Embedding层注意力机制的实现Encoder实现Decoder实现Transformer实现 注意力机制的主要思想是将注意力集中在信息的重要部分&#xff0c;对重要部分投入更多的资源&#xff0c;以获取更多所关注目标的细节…

GoF之代理模式(静态代理+动态代理(JDK动态代理+CGLIB动态代理带有一步一步详细步骤))

1. GoF之代理模式&#xff08;静态代理动态代理(JDK动态代理CGLIB动态代理带有一步一步详细步骤)&#xff09; 文章目录 1. GoF之代理模式&#xff08;静态代理动态代理(JDK动态代理CGLIB动态代理带有一步一步详细步骤)&#xff09;每博一文案2. 代理模式的理解3. 静态代理4. 动…

整理好的中债国债3年期到期收益率数据集(2002-2023年)

01、数据简介 国债&#xff0c;又称国家公债&#xff0c;是由国家发行的债券&#xff0c;是中央ZF为筹集CZ资金而发行的一种ZF债券&#xff0c;是中央ZF向投资者出具的、承诺在一定时期支付利息和到期偿还本金的债权债务凭证。 中债&#xff0c;是指由中国中债登记结算有限责…

Jetpack Compose一:初步了解Compose

Intellij IDEA构建Android开发环境 IntelliJ IDEA 2023.2.1 Android开发变化 IDEA配置使用Gradle 新建Compose工程&#xff0c;取名ComposeStudy 可以看到的是IDEA为项目初始化了部分代码 使用Compose开发不再需要使用xml文件来设计布局了 Compose中的Text也不同于Android V…

机器学习特征降维

目录 特征降维概念 低方差过滤法 PCA主成分分析 相关系数法 小结 特征降维概念 特征对训练模型时非常重要的&#xff1b;用于训练的数据集包含一些不重要的特征&#xff0c;可能导致模型性能不好、泛化性能不佳&#xff1b;例如&#xff1a; 某些特征的取值较为接近&…

部署Gerapy

1.Gerapy 是什么&#xff1f; Gerapy 是一款基于 Python 3 的分布式爬虫管理框架&#xff0c;它旨在简化和优化分布式爬虫的部署、管理和监控过程。 2.作用与功能&#xff1f; 2.1分布式管理&#xff1a; Gerapy 允许用户在多台机器上部署和管理Scrapy爬虫&#xff0c;实现爬虫…

Oracle数据库之 常用数据库对象(二)

目录 1.视图 1.1.什么是视图&#xff1f; 1.2.创建视图的语法 1.3.简单视图和复杂视图 1.4.创建复杂视图 1.4.1.创建复杂视图的步骤 1.4.2.示例 1.4.3.注意事项 1.5.视图中使用DML的规定 1.5.1.屏蔽DML操作 1.6.删除视图 2.序列 2.1.语法&#xff1a; 2.2.查询序…

HNU-操作系统OS-2024期中考试

前言 该卷为22计科/智能OS期中考卷。 感谢智能22毕宿同学记忆了考卷考题。 同学评价&#xff1a;总体简单&#xff1b;第1&#xff0c;7概念题较难需要看书&#xff1b;第4&#xff0c;5题原题。 欢迎同学分享答案。 【1】共10分 操作系统的设计目标有哪些&#xff1f; 【…

安卓surfaceview的使用方式

1. 什么是surfaceview surfaceview内部机制和外部层次结构 在安卓开发中&#xff0c;我们经常会遇到一些需要高性能、高帧率、高画质的应用场景&#xff0c;例如视频播放、游戏开发、相机预览等。这些场景中&#xff0c;我们需要直接操作图像数据&#xff0c;并且实时地显示到…

传感网应用开发教程--AT指令访问新大陆云平台(ESP8266模块+物联网云+TCP)

实现目标 1、熟悉AT指令 2、熟悉新大陆云平台新建项目 3、具体目标&#xff1a;&#xff08;1&#xff09;注册新大陆云平台&#xff1b;&#xff08;2&#xff09;新建一个联网方案为WIFI的项目&#xff1b;&#xff08;3&#xff09;ESP8266模块&#xff0c;通过AT指令访问…

电商购物系统首页的商品分类

如上图对商品的一个分类实际上和省市区的分类十分类似 , 都是通过自关联的方法来实现 , 但是这里不同的是 , 涉及到外键来获取数据 首先让我们来看一下最后通过后端返回数据的形式是什么样子的 """{1:{channels:[{id:1 , name:手机 , url:},{}{}],sub_cats:[{…

Vue报错:TypeError: Cannot read property ‘upgrade‘ of undefined

Vue报错&#xff1a;TypeError: Cannot read property ‘upgrade’ of undefined 前言 最近打开一个很就之前的开发项目&#xff0c;因为扫描包&#xff0c;所以删除了部分代码&#xff0c;后来就一直报错&#xff0c;现在总结一下。 报错原因&#xff1a;vue.config.js中 d…

力扣HOT100 - 74. 搜索二维矩阵

解题思路&#xff1a; 两次二分&#xff0c;第一次定位行&#xff0c;第二次定位列。 class Solution {public boolean searchMatrix(int[][] matrix, int target) {int m matrix.length, n matrix[0].length;int l 0, r m - 1;//定位行int row -1;while (l < r) {in…

【机器学习300问】86、简述超参数优化的步骤?如何寻找最优的超参数组合?

本文想讲述清楚怎么样才能选出最优的超参数组合。关于什么是超参数&#xff1f;什么是超参数组合&#xff1f;本文不赘述&#xff0c;在之前我写的文章中有详细介绍哦&#xff01; 【机器学习300问】22、什么是超参数优化&#xff1f;常见超参数优化方法有哪些&#xff1f;htt…

Web3探索加密世界:如何避免限制并增加空投成功的几率

今天分享空投如何避免限制以提高效率&#xff0c;增加成功几率&#xff0c;首先我们来了解什么是空投加密&#xff0c;有哪些空投类型。 一、什么是空投加密&#xff1f; 加密货币空投是一种营销策略&#xff0c;包括向用户的钱包地址发送免费的硬币或代币。 加密货币项目使用…

BM7 链表中环的入口结点(快慢指针模板题)

描述 给一个长度为n链表&#xff0c;若其中包含环&#xff0c;请找出该链表的环的入口结点&#xff0c;否则&#xff0c;返回null。 数据范围&#xff1a; &#x1d45b;≤10000n≤10000&#xff0c;1<结点值<100001<结点值<10000 要求&#xff1a;空间复杂度 &…

第02章 计算机网络概述

2.1 本章目标 了解计算机网络的定义了解计算机网络的功能了解计算机网络的分类了解计算机网络的组成 2.2 计算机网络的定义 2.3 计算机网络的功能 2.4 计算机网络的分类 物理拓扑结构分类&#xff1a;总线型、环型、星型 2.5 计算机网络的组成 网络适配器(NIC)接口规格分类&a…

阮怀俊谈如何盘活和挖掘乡村文旅资源

近年来&#xff0c;浙江凭借高水平建设新时代美丽乡村&#xff0c;各项工作持续走在全国前列&#xff0c;最近&#xff0c;在国家发展改革委关于恢复和扩大消费措施的通知中也提到&#xff1a; “推广浙江‘千万工程’经验&#xff0c;建设宜居宜业和美乡村。实施文化产业赋能乡…