基于Matplotlib的模型性能可视化工作

一、项目简介

本项目是科技考古墓葬识别工作的中间过程,因为需要大量复用所以另起一章好了。

主要涉及到数据读取、数据可视化和少量的数据处理过程。

二、相关知识

  • Pandas
  • Matplotlib

三、实验过程

1. 数据探索性分析

1.1 准备工作–导入模块
import pandas as pd
import os
import numpy as np 
import matplotlib.pyplot as plt
1.2 数据预处理

我们首先构建一个色彩映射表,这个表将由一组自定义的颜色条构成,并且对应一个索引值,以便我们按照强度自定义生成绘图颜色。

可以在网址 上对你想要的颜色生成色度条。

colorMap=dict(zip(range(len(ModelMap),-1,-1),["#d16ba5","#c777b9", "#ba83ca", "#aa8fd8", "#9a9ae1", "#8aa7ec","#79b3f4","#69bff8","#52cffe","#41dfff", "#46eefa", "#5ffbf1"
]))

这个优势在于手动调整,不想怎么做可以使用各种可视化模块里自带的色彩映射cmap

然后就是将训练的模型信息输入到一个字典中,这里k,v值分别是模型名称、(模型参数量,模型平均精度)。

ModelMap={"YOLOv5-n":[1.9,0.7],"YOLOv5-s":[7.2,0.782],"YOLOv5-m":[21.2,0.777],"YOLOv5-l":[46.5,0.746],"YOLOv5-x":[86.7,0.768],"YOLOv8-n":[3.2,0.764],"YOLOv8-s":[11.2,0.813],"YOLOv8-m":[25.9,0.7],"YOLOv8-l":[43.7,0.7],"YOLOv8-x":[68.2,0.7]
}

我们想要将模型参数量从小到大排布,以便确定最优性能,那么可以使用sort方法进行排序:

newSort=list(ModelMap.items())
newSort.sort(key=lambda x:x[1][1],reverse=True)

这里面的reverse=True表示降序排序,这里等于是以模型的精度进行排序。注意lambda表达式,:前表示输入,后表示返回值。

结果应该如下所示。

[('YOLOv8-s', [11.2, 0.813]),('YOLOv5-s', [7.2, 0.782]),('YOLOv5-m', [21.2, 0.777]),('YOLOv5-x', [86.7, 0.768]),('YOLOv8-n', [3.2, 0.764]),('YOLOv5-l', [46.5, 0.746]),('YOLOv5-n', [1.9, 0.7]),('YOLOv8-m', [25.9, 0.7]),('YOLOv8-l', [43.7, 0.7]),('YOLOv8-x', [68.2, 0.7])]

2. 可视化

为了更加直观的比较模型性能,我们选择采用二维散点图进行绘制。在此过程中,采用不同的颜色和尺寸可以让结果更加清晰直观。因此,我们选择了颜色和尺度两个额外维度,辅助可视化过程。

首先是获取尺度信息,这里采用的归一化缩放,为了让数据区间更加美观,选择采用np.clip(n,a,b)方法将数据区间变成(a,b),并执行相应的放缩。

def getScale(x,k=9.5):return np.clip(((x-min(y))/(max(y)-min(y))),0.15,0.95)*k
2.1 绘制散点图

还记得我们之前构建的自定义色度条吗,现在我们将结合色度条和尺度信息来绘制散点图。

# 首先是设置好 Figure 大小
# 在matplotlib中,绘图将基于 figure canvas axis 进行
plt.figure(figsize=(16,8))for i,(k,v) in enumerate(newSort):# label 表示标签# s表示尺寸信息# c表示色彩信息# alpha表示透明度通道信息plt.scatter(v[0],v[1],c=colorMap[i],label=k,s=getScale(v[1])**2*np.pi,alpha=1)# 添加行列标签
plt.ylabel("AP")
plt.xlabel("Parameters (M)")# 在右上显示图例
plt.legend(loc='upper right')
# 设置标题
plt.title("AP-Params of different Model structures")# 设置 xaxis 范围
plt.xlim(0,120)
# 设置格网信息
plt.grid(alpha=0.1,linestyle="--")for i,j in zip(x,y):# 标记,用的是annotate 方法# plt.annotate(text,loc,xytext,textcoords,ha)# 常用参数 text表示文本信息 loc表示坐标点位置# xytext表示文本偏移量 textcoords表示文本以什么为坐标# ha表示文本显示位置,一般这组参数可以不动,即# xytext=(0,10),textcoords="offset points",ha='center'plt.annotate("%s"%j,(i,j),xytext=(0,10),textcoords="offset points",ha='center')
plt.savefig(r"new.jpg")plt.show()

在这里插入图片描述

此时图像如图所示,为了将同一类模型归类,我们还可以采用折线图进行辅助。

2.2 绘制折线图
for i,j in ModelMap.values():x.append(i)y.append(j)plt.plot(x[:5],y[:5],label="YOLO-v5",linestyle=':',alpha=0.5)
plt.plot(x[5:],y[5:],label="YOLO-v8",linestyle=':',alpha=0.5)

结果如图所示:

在这里插入图片描述

2.3 绘制模型过程性参数

在本阶段,我们需要做的需求为: 将训练过程中的精度、召回率以及mAP:0.5,mAP:0.5:0.95进行可视化。

可简要拆解为以下过程:

  • 读取相关csv文件
  • 构建文件映射,并且将每30epoch进行平均
  • 基于matplotlib绘制
  • 基于pyecharts进行绘制

为了方便读取csv文件,我们可以用os.listdir方式快速获取某一路径下的所有子文件,这个方法常常结合寻找后缀来用,譬如:

[i for i in os.listdir(path) if i.endswith('.csv')]

这里我们有两个大文件夹,先获取其路径:

yolov5=r"C:\Users\Administrator\Desktop\Train_Res\YOLO_V5"
yolov8=r"C:\Users\Administrator\Desktop\Train_Res\YOLO_V8"

然后构建csv文件列表:

data_list=[os.path.join(yolov5,i) for i in os.listdir(yolov5) if i.endswith('.csv')]+[os.path.join(yolov8,i) for i in os.listdir(yolov8) if i.endswith('.csv')]

与上述方法相同,当路径较多时,可写成迭代器形式。

接下来就是确定模型名称+csv文件了,用的是pd.read_csv,这里如果出现中文,可能需要加上pd.read_csv(encoding="utf-8")

dataMap={}
for i in data_list:fir,sec=i.find("_V")+2,i.find(".c")-1dataMap[f"yolov{i[fir]}_{i[sec]}"]=pd.read_csv(i)

注意这样的写法不具有泛用性,甚至改个位置就会报错,但是确实很快

查看我们的结果:

dataMap.keys()# dict_keys(['yolov5_l', 'yolov5_m', 'yolov5_s', 'yolov5_x', 'yolov8_n', 'yolov8_s'])

已经拿到数据了,然后就是看看读取到的结果咋样:

dataMap['yolov5_x'].head()

在这里插入图片描述

成功。

下面来构造数据,由于有些模型采用了剪枝,在100epoches不收敛的情况下自动终止训练,所以数据的长度不一致。我们可以取其中最短的进行分析,不过这里用了360epoches。

请注意,确定你的模型在区间 U ( δ ) U(\delta) U(δ)内是陷入了局部最优解的,否则没有比较意义。

x=[i for i in range(0,360,15)]
# 获取列名
col=dataMap['yolov5_x'].columns

由于有多组参数需要比较,出于复用性考虑,我们采用函数的方式进行绘制:

def plotValue(idx,reset=None,ws=15):plt.figure(figsize=(20,8))for k,v in dataMap.items():v=v.iloc[:,idx]# 此时的平滑窗口是15plt.plot(x,[sum(v[i*ws:i*ws+ws])/ws for i in range(360//ws)],label=k)plt.xlabel("epoches")ylab=col[idx] if not reset else resetplt.ylabel(ylab)plt.title(f"{ylab} variation of different models")plt.legend()return plt

调整参数ws 即可获得在不同大小的滑动窗口下的平均值。reset 支持自己改名称,这都没啥

来看看结果:

plotValue(4,"Precision").show()
plotValue(5,"Recall").show()
plotValue(6,"mAP_0.5").show()
plotValue(7,"mAP_0.5:0.95").show()

在这里插入图片描述

看一个就好了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/835718.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用python写个控制MicroSIP自动拨号和定时呼叫功能(可用在小型酒店叫醒服务)MicroSIP定时拨号

首先直接上结果吧,MicroSIP 助手,控制MicroSIP自动拨号,定时呼叫的非常实用小工具! 在使用MicroSIP 助手之前,我们需要了解MicroSIP是什么,MicroSIP是一个SIP拨号软件,支持注册任意SIP平台实现拨…

【xxl-job | 第三篇】SpringBoot整合xxl-job

文章目录 3.SpringBoot整合xxl-job3.1定时任务服务配置3.1.1导入maven依赖3.1.2yml配置3.1.3XxlJobConfig配置类3.1.4定时任务类 3.2xxl-job配置3.2.1新增执行器3.2.2新增任务3.2.3执行任务3.2.4查看日志3.2.5查看任务后台日志 3.3小结 3.SpringBoot整合xxl-job 3.1定时任务服…

AppBuilder低代码体验:构建雅思大作文组件

AppBuilder低代码体验:构建雅思大作文组件 ​ 在4月14日,AppBuilder赢来了一次大更新,具体更新内容见:AppBuilder 2024.04.14发版上线公告 。本次更新最大的亮点就是**新增了工作流,低代码制作组件。**具体包括&#x…

聚合工程搭建、工程依赖导入

上一章讲了自动化云测平台的一些环境的准备 如果还未完成云服务器的环境搭建和本地环境的搭建,请点击左侧 -> 传送门 那么正式开始这一章的内容 聚合工程搭建 创建项目 我们先给项目命个名:xxx-meter,构建系统,我们选择M…

前端开发指导

前端开发指导 本文介绍了配置前端开发环境需要的软件、配置项等,指导如何开始进行UDM部门前端开发的全流程。本文以Windows系统下在Microsoft Virtual Studio Code中开发为基础。 一、综述 目标:零基础或者新员工依照此文档,能够完成开发环境的搭建及熟悉测试环境的搭建。…

代码审计平台sonarqube的安装及使用

docker搭建代码审计平台sonarqube 一、代码审计关注的质量指标二、静态分析技术分类三、使用sonarqube的目的四、sonarqube流程五、docker快速搭建sonarqube六、sonarqube scanner的安装和使用七、sonarqube对maven项目进行分析八、sonarqube分析报告解析九、代码扫描规则定制十…

【数据分析】 JupyterNotebook安装及使用简介

各位大佬好 ,这里是阿川的博客 , 祝您变得更强 个人主页:在线OJ的阿川 大佬的支持和鼓励,将是我成长路上最大的动力 阿川水平有限,如有错误,欢迎大佬指正 在数据分析中,一般用Pycharm编辑代…

codeforces round 149 div2(a,b,c,d)

手速场&#xff0c;可惜我傻逼卡 c c c了 题目链接 A #include<bits/stdc.h>using namespace std;#define int long long #define PII pair<int,int>void solve() {int n,k;cin>>n>>k;if(n<k){cout<<1<<\n;cout<<n<<\n;}…

VSCode:设置顶部文件标签页滚动条的宽度

使用VSCode打开多个文件后&#xff0c;顶部的文件标签可以通过滚动条进行滚动&#xff0c;但是缺点是该滚动条太窄了&#xff0c;不好选择。 可以通过如下方法修改改滚动条的宽度&#xff1a; 1.点击设置 2.选择工作台->编辑管理->Title Scrollbar Sizing->Large 3.可…

书生浦语训练营第四次课作业

基础作业 环境配置 拷贝internlm开发机内的环境 studio-conda xtuner0.1.17# 激活环境 conda activate xtuner0.1.17 # 进入家目录 &#xff08;~的意思是 “当前用户的home路径”&#xff09; cd ~ # 创建版本文件夹并进入&#xff0c;以跟随本教程 mkdir -p /root/xtuner0…

专项技能训练五《云计算网络技术与应用》实训8-1:建立基于OpenvSwitch的GRE隧道

文章目录 建立基于OpenvSwitch的GRE隧道1. 使用VMware安装2个CentOS 7虚拟机&#xff0c;安装时记得都开启CPU虚拟化&#xff0c;第一台命名为“Docker”&#xff0c;第二台命名为“KVM”。2. 安装完虚拟机后&#xff0c;进入虚拟机&#xff0c;修改网络配置&#xff08;onboot…

进程间通信(二)

共享内存 当进程A和进程B有一块共享的内存空间时&#xff0c;这两个进程之间的数据交互就会变的很简单&#xff0c;只需要像读取自己内存空间中的元素一样去读取数据即可。实现共享内存进行数据交互的一般步骤&#xff1a; 创建/打开共享内存内存映射数据交换断开与共享内存的…

任务:单域,域树的搭建

一、单域&#xff1a; 搭建所需的系统&#xff1a;win2016 sever&#xff0c;win10 1.在创建域前&#xff0c;先设置静态ip 先查看win2016 sever的IP&#xff0c; ip&#xff1a;192.168.154.133 网关&#xff1a;192.168.154.2 DNS服务器&#xff1a;192.168.154.2 设置…

【nodejs 命令行交互神器 - inquirer.js】

需求 大家在开发时&#xff0c;有时需要从命令行读取用户的输入&#xff0c;或者让用户选择。在nodejs中&#xff0c;这个怎么实现? 原生实现 ❌ process.stdin.setEncoding(utf8);process.stdin.on(readable, () > {let chunk;// 使用循环确保我们读取所有的可用输入wh…

局域网内监控软件有哪些:五款好用的网络监控神器分享

面对员工这种现象怎么办&#xff1f; 监控电脑最有效&#xff01; 局域网监控软件&#xff0c;你值得拥有&#xff01; 要想轻松监控电脑&#xff0c;这几款局域网内监控软件不容错过&#xff01;&#xff01;&#xff01; 一、域智盾软件 是一款专注于企业终端安全管理的软…

中职大数据专业介绍:大数据技术应用

近年来&#xff0c;人工智能在经济发展、社会进步、国际政治经济格局等方面已经产生重大而深远的影响。规划纲要对“十四五”及未来十余年我国人工智能的发展目标、核心技术突破、智能化转型与应用&#xff0c;以及保障措施等多个方面都作出了部署。 据2020年全国教育事业发展统…

两重惊喜!奥特曼预告GPT-4和ChatGPT重大更新,Open AI要放大招

OpenAI在今天官宣13日&#xff08;下周一10点&#xff09;开启线上直播&#xff0c;将会展示全新的ChatGPT demo的演示以及GPT-4的重大更新&#xff01; OpenAI首席执行官Sam Altman在X上表示&#xff0c;这些的发布会&#xff0c;公司不会宣布下一代对话式人工智能GPT-5或人工…

ue引擎游戏开发笔记(37)——实现造成伤害

1.需求分析&#xff1a; 在游戏中已经能够射击&#xff0c;并且能得到实际的落点反馈&#xff0c;但本质上这种射击没有任何实际数值伤害&#xff0c;为射击添加实际的子弹伤害数值。 2.操作实现&#xff1a; 1.思路&#xff1a;ue本身函数FPointDamageEvent就可以解决&#x…

win11安装各银行的网银助手都无法打开,双击没反应?

大神贴 右键网银助手属性&#xff0c;在目标后面敲一下空格&#xff0c;输入**-runapp**&#xff0c;应用即可。 如图示例&#xff1a;

【HDFS】关于HDFS-17497:在commit block时更新quota

链接:https://github.com/apache/hadoop/pull/6765 Ticket标题:The number of bytes of the last committed block should be calculated into the file length。 HDFS里,一个在写入的文件可能包含多个commited状态的块。 但是计算文件大小的时候,最后一个commited block并…