车载测试系列:自动驾驶中间件SOME/IP

一、以太网引入汽车

2004年,宝马汽车的OBD诊断口采用的是高速CAN总线,速率为500kbit/s,除去CAN协议本身的开销,通过OBD口升级控制器的净升级速度降到200kbit/s。预计到2008年,软件更新的数据量会达到1GB,按照现在CAN的速度来算,更新一次软件要16个小时。经过内部讨论,将升级1GB数据的性能参数设置为15min,转换为速度约为9Mbit/s,开始考虑引入新的刷写总线。

从当时现有的选择来看,只有MOST、USB可选,虽然Flexray的速度可达10Mbit/s,但是2004年还没有推出,要到2006年才被推出。

MOST总线,2004年还是MOST25,速度约7Mbit/s,勉勉强强够格。是在2001年引入宝马汽车中的,主要用于同步音频通信。但是其存在一些缺点:

  • 总线拓扑结构问题,由于MOST总线必须是环形拓扑,这意味在测试仪和网关之间必须添加另外一个拓扑环,或者在连接测试仪前接一个临时的扩展环,这增加了复杂性。
  • 较高的资源需求,要实现7Mbit/s的最大带宽,需要使用1014B的数据包,而且需要64个包组成一个块(这个是MOST-high协议的一部分),也就意味着光数据包的接收就需要64KB的RAM,在当时这个资源占太多了。
  • 新接口,MOST25做升级,属于全新的接口,与现有的不兼容,需要另做一套诊断应用程序,这也意味着成本高昂的问题。

USB作为消费类设备接口,其在PC上非常常见,因此是适合外部测试仪的,而且通信速度高达480bit/s,远远高于需求,但是其缺点太明显:

  • 鲁棒性和抗扰性不充分,想要保证信号的完整性,USB需要昂贵的电缆和连接器。
  • USB最大支持的线缆长度为4m,难以覆盖使用场景。
  • 必须为开发基于汽车的协议栈和驱动程序。

上面这些已有的无法满足需求后,宝马开始研究以太网,因为以太网是一种被充分验证的技术,并且有良好的基础设施以及足够的传输速度。

在评估以太网在汽车上的适用性时,最关键部分是物理层,刚开始预计会像USB一样,为了满足鲁棒性,需要高昂的线缆和接插件,宝马通过将以太网连接线换成非屏蔽双绞线,进行抗扰度进行测试,结果表明,非屏蔽线也满足要求,没必要做任何修改。

从而宝马开始了将以太网应用到车上,包括组织联盟建立车载以太网标准,例如OPEN联盟,着手基于以太网的上层协议,比如下面的SOME/IP。

二、什么是SOME/IP?

SOME/IP 是 Scalable Service-Oriented Middleware over IP 的缩写,由宝马于 2011 年开发。这个名字清楚地表明它是一种中间件解决方案,可以在控制器之间实现面向服务的通信。更具体地说,SOME/IP 提供了广泛的中间件功能,如序列化、远程过程调用 (RPC)、服务发现和订阅,以使 ECU 软件能够相互通信。

SOME/IP 的主要特点:

1、序列化和反序列化:将数据结构转换成字节序列或者将字节序列转换为数据结构,这样有利于数据的高效传输。

2、远程过程调用 (RPC):它是客户端在需要来自服务器的一些数据时采用的一种数据交换方法。RPC 可能有也可能没有返回值,即客户端可以请求数据作为响应,或者简单地调用一个函数来在服务器端执行某些任务。

3、服务发现:服务发现 (SD) 协议是 SOME/IP 概念的支柱。在面向服务的架构中,服务(功能实体-方法、事件或字段)必须是可发现的。SOME/IP SD 协议管理这个方面——是提供服务还是阻止它可用。

4、发布/订阅:客户端可以订阅服务器的内容,从而可以动态地接收来自服务器的更新数据。SOME/IP 的发布/订阅功能推断客户需要哪些数据(事件/字段)并共享相同的数据。Pub/Sub 由 SOME/IP SD管理。

在2014年,SOME/IP正式被集成进AUTOSAR 4.X,并且得到了持续的发展和完善:

  • AUTOSAR 4.0 - 完成宝马SOME/IP消息的初步集成;
  • AUTOSAR 4.1 - 支持SOME/IP-SD及其发布/订阅功能;
  • AUTOSAR 4.2 - 添加transformer用于序列化以及其他相关优化;
  • AUTOSAR 4.3 - 修复一些transformer bug同时添加针对大量UDP数据包的SOME/IP-TP协议以及其他SOME/IP-SD的优化工作。

SOME/IP协议

SOME/IP协议首先定义了报文的格式,如下图所示:

SOME/IP报文格式

Message ID

Message ID又通常叫报文ID,长度为32bit,包 含 Service ID 和 Method ID,各16bit, 每一个SOME/IP报文有唯一的报文ID,类似于CAN ID。当定义为Method时,Method ID的最高有效位值为0,当定义为Event时,Method ID的最高有效位为1,此时的Method ID又叫做Event ID。每一个服务应该由唯一的 Service ID作为标识;在同一服务, 不同的Method和Event也有唯一的Method ID或Event ID作为标识。

长度(Length)

长度字段的长度为32bit,指的是从Request ID到Payload的长度。

请求 ID(Request ID)

Request ID的长度为32bit,由Client ID和Session ID组成。Client ID是客户端/服务器的唯一标识;Session ID是客户端和服务器之间通信过程中每次调用的标识,可以根据不同的应用场景,决定是否使用Session ID。

协议版本(Protocol Version)

该字段长度为8bit,用来表示当前使用的协议的类型,该字段当前固定为0x01。

Message Type

用来识别不同的消息类型,目前存在的类型如下图所示,其中TP表示分包的报文,按照AUTOSAR标准(R21-11)定义如下:

Message Type表

Return Code

Return Code用来指示Message是否被成功处理了,或针对请求中的错误内容进行反馈,如下图为AUTOSAR(R21-11)中定义的Return Code类型:

定义表

Payload :数据段,用于放置需要传输的数据。

三、序列化

AUTOSAR对SOME/IP传输数据的序列化(数据结构转换成线性字节序列,或反之,如下图所示)也进行了标准化,除了支持AUTOSAR规定的基本数据类型(布尔类型、uint8、uint16、uint32,、sint8、sint16、sint32、float32和float64)之外,还支持包括结构体、联合体、字符串、数组等复杂的数据结构的传输 。

序列化示例

四、SOME/IP通信机制

SOME/IP的通信机制包含远程过程调用、Event和Field。远程过程调用是指一个节点向另一个节点发送请求服务,这种方式又称为Method,多用于客户端向服务器发送控制命令,根据服务器是否有反馈分为Request/Response(R/R)和通信Fire&Forget(F&F)通信。

Event类似于CAN报文,用以发布状态,根据实际的应用场景,可以有不同的发送方式。

Field用以表示某一功能的状态量。可以通过Method发布控制命令,即Setter;也可以通过Method去请求获取状态,即Getter;在状态发生改变时也可以发送通知,即Notification。

1、Request/Response(R/R)通信

R/R是一种有请求和响应的Method,意味着客户端发送请求之后,服务端需要返回响应报文。

Request/Response通信方式

2、Fire&Forge(T&F)通信

客户端向服务器发送请求报文,服务器不会有响应报文反馈。F&F通信中与R/R通信中的客户端行为一样,不同的是F&F通信时,请求报文的报文类型为REQUEST_NO_RETURN,而R/R的报文类型为RESPONS。

Fire&Forget通方式

3、Event

SOME/IP中定义了3种不同的Event方式,分别是周期发送、值改变触发和值大于某一阈值触发。

SOME/IP中的Event在网络中的发送是基于事件组传输的,要为定义的每一个Event分配事件组,同一个Event可以存在于不同的事件组,但不能定义空的事件组。

Event的收发基于SOME/IP的发布和订阅行为,在SD通信时,客户端订阅服务器的事件组,在正常的SOME/IP通信时,依据定义的发送行为,周期或者值改变触发Event的发送。

Event通信方式

4、Field

Field表示一种功能的状态,可以用来表示某一状态量,如车门、车窗等,对于Setter来说,请求报文的有效载荷中存放设置Field表示状态量的控制命令 ,对于Getter来说,请求报文的有效载荷为空,服务器通过识别请求报文的报文ID,然后将Field表示的状态量放在响应报文的有效载荷中。Notification指的是Field表示的状态量值,当Field表示的状态量值发生改变或被外界触发时发送Notification。

Field通信方式

五、SOME/IP SD

SOME/IP SD报文是一种特殊的SOME/IP报文,其报文格式和SOME/IP报文是一样的。不同的是SOME/IP SD报文的SOME/IP报头字段的报文ID、接口版本、报文类型和返回码的值是固定不变的,SOME/IP SD报文的SOME/IP SD部分又包含了标志字段、预留字段、Entry和Option等字段,SOME/IP SD报文格式如下图所示:

SOME/IP SD报文

Flags

Flags的第一个字节为标志字段,其高三位从高到低依次为重启标志位、单播标志位和初始数据控制标志位,低五位为预留位。

Entry 阵列

服务发现是通过SD报文中的Entry阵列字段携带的不同类型Entry来实现的,
Entry用来同步服务实例状态和处理事件组的发布和订阅。依据SD 报文中Entry的作用不同将SD的报文类型分为七种,其中Find报文、Offer报文和Stop Offer报文基于不同的机制周期发送,用于同步服务实例的状态;订阅事件组报文、停止订阅事件组报文、订阅ACK报文和订阅NACK报文用于处理事件组的发布和订阅。

Option 阵列

SD报文中的Entry通过引用Option阵列中的Option携带其他信息,如配置信息、传输协议、端口号和IP地址等相关信息。根据Option的作用不同,一般将Option分为配置Option、单播IP地址Option、多播IP地址Option和SD通信IP地址Option。配置Option用来传输服务名称、协议类型、实例名称等信息,IP地址Option分别表明节点通信单播、多播的地址信息和SD通信地址信息。

六、SOME/IP SD通信机制

SD中,不管是客户端还是服务端,通信行为分为Down和Available,在Available下又分为Initial Wait阶段、Repetition阶段和Main阶段。

在Down阶段,服务不可用。服务可用后会立即进入Initial Wait阶段,该阶段的作用一是避免流量突发,防止拥堵;二是可以将多个Entry放到一个SD报文中,降低报文数量。在Repetition阶段,客户端和服务器通过快速的发送Find和Offer报文实现服务消费关系的快速同步, 在Main阶段,SD通信处于稳定状态,为了降低SD报文的数量,定义客户端不发送Find报文,而服务器以相对较慢的周期发送Offer报文。

对于服务端来说,在Initial Wait阶段的时间是在INITIAL_DELAY_MIN和INITIAL_DELAY_MAX之前的随机值,当计数器超时后,开始发送第一个offer报文,并且进入Repetition阶段,在这个时候,会定期发送REPETITIONS_MAX次offer报文。然后进入Main阶段,在Main阶段会 以 周 期 时 间 CYCLIC_OFFER_DELAY 周 期 性 发 送Offer报文。若收到客户端发送的Find报文,服务器单播响应Offer报文。

服务端的状态跳转图

对于客户端来说,客户端在Down阶段不请求服务。若收到服务器发送的Offer报文,客户端存储该服务实例的状态,并启动该Offer报文的TTL计时器,此时若客户端请求服务,直接进入Main阶段。

在客户端需要请求服务后,进入Initial Wait阶段。若收到服务器发送的Offer报文,取消计时器,直接进入Main阶段;若没有收到服务器发送的Offer报文,等待INITIAL_DELAY(位于INITIAL_DELAY_MAX和INITIAL_DELAY_MIN之间的随机值),计时器超时后,发送一个Find报文,进入Repetition阶段。

客 户 端 在Repetition阶 段 定期快速发送REPETITIONS_MAX次Find报文,若收服务器发送的Offer报文,停止当前阶段的计数和计时,进入Main阶段。

在Main阶段,SD通信已进入相对稳定的状态,这里定义客户端不发送Find报文,以降低SD报文数量。

 总结

如果你对此文有任何疑问,如果你也需要接口项目实战,如果你对软件测试、接口测试、自动化测试、面试经验交流感兴趣欢迎加入我们,加入方式在文章的最后面

  自动化测试相关教程推荐:

2023最新自动化测试自学教程新手小白26天入门最详细教程,目前已有300多人通过学习这套教程入职大厂!!_哔哩哔哩_bilibili

2023最新合集Python自动化测试开发框架【全栈/实战/教程】合集精华,学完年薪40W+_哔哩哔哩_bilibili

测试开发相关教程推荐

2023全网最牛,字节测试开发大佬现场教学,从零开始教你成为年薪百万的测试开发工程师_哔哩哔哩_bilibili

postman/jmeter/fiddler测试工具类教程推荐

讲的最详细JMeter接口测试/接口自动化测试项目实战合集教程,学jmeter接口测试一套教程就够了!!_哔哩哔哩_bilibili

2023自学fiddler抓包,请一定要看完【如何1天学会fiddler抓包】的全网最详细视频教程!!_哔哩哔哩_bilibili

2023全网封神,B站讲的最详细的Postman接口测试实战教学,小白都能学会_哔哩哔哩_bilibili

  总结:

 光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

​​​

​​​

如果对你有帮助的话,点个赞收个藏,给作者一个鼓励。也方便你下次能够快速查找。

如有不懂还要咨询下方小卡片,博主也希望和志同道合的测试人员一起学习进步

在适当的年龄,选择适当的岗位,尽量去发挥好自己的优势。

我的自动化测试开发之路,一路走来都离不每个阶段的计划,因为自己喜欢规划和总结,

测试开发视频教程、学习笔记领取传送门!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/835106.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

串口初始化自己独立的见解--第九天

1.SM0,SM1 我们一般用 8位UART,波特率可变 (方式1的工作方式) SCON :SM2 一般不用,SM0 0 ,SM1 1 PCON : 有两位 我们不动它,不加速,初始值 TMOD:8位自动重装定时器&#xff0…

如何自动(定时/间隔/重复)执行 同步文件、备份打包加密压缩文件

参考下列两个教程结合使用即可: 快捷自由定时重启、注销、关机 如何从多个文件夹内转移全部文件(忽略文件夹的结构)(进行复制)(再打包) 就是先设定好 勾选对 来源路径’Zip打包,并…

QT作业5

1、聊天室 服务器端 //头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTcpServer> #include <QTcpSocket> #include <QList> #include <QListWidget> #include <QMessageBox> #include <QDebug> #includ…

渗透之sql注入----二次注入

目录 二次注入的原理&#xff1a; 实战&#xff1a; 第一步&#xff1a;找注入点 找漏洞&#xff1a; 注入大概过程&#xff1a; 第二步&#xff1a;开始注入 二次注入的原理&#xff1a; 二次注入是由于对用户输入的数据过滤不严谨&#xff0c;导致存在异常的数据被出入…

通俗的理解网关的概念的用途(三):你的数据包是如何到达下一层的

其实&#xff0c;这一章我写不好&#xff0c;因为这其中会涉及到一些计算和一些广播等概念&#xff0c;本人不善于此项。在此略述&#xff0c;可以参考。 每台设备的不同连接在获得有效的IP地址后&#xff0c;会根据IP地址的规则和掩码的规则&#xff0c;在操作系统和交换机&a…

暴力数据结构之栈与队列(队列详解)

1.队列的定义 队列是一种特殊的线性表&#xff0c;它遵循先进先出&#xff08;FIFO&#xff09;的原则。在队列中&#xff0c;只允许在表的一端进行插入操作&#xff08;队尾&#xff09;&#xff0c;而在另一端进行删除操作&#xff08;队头&#xff09;。这种数据结构确保了最…

基于Springboot的微乐校园管理系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的微乐校园管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构…

Java设计模式 _结构型模式_外观模式

一、外观模式 1、外观模式 外观模式&#xff08;Facade Pattern&#xff09;是一种结构型模式。主要特点为隐藏系统的复杂性&#xff0c;并向客户端提供了一个客户端可以访问系统的接口。这有助于降低系统的复杂性&#xff0c;提高可维护性。当客户端与多个子系统之间存在大量…

【MQTT】mosquitto 的 “下载、交叉编译、使用” 详细教程,手把手搭建一个MQTT Broker

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

传统企业如何实现数字化转型?

随着信息技术的迅猛发展和互联网的普及&#xff0c;数字化转型已经成为企业和组织不可忽视的趋势&#xff0c;数字化转型对企业和组织来说是必要的&#xff0c;它可以提升竞争力&#xff0c;推动创新发展&#xff0c;实现数据驱动决策&#xff0c;提升用户体验并适应未来发展。…

中北大学软件学院javaweb实验二JSP应用开发实验报告

实验时间 2024年4月 25 日17时至 22 时 学时数 4 1.实验名称 实验2&#xff1a;JSP应用开发(2学时) 2.实验目的 &#xff08;1&#xff09;学会编写和运行简单的JSP页面&#xff0c;理解其运行原理&#xff1b; &#xff08;2&#xff09;学会使用JSP的声明、表达式、脚…

Rust 适合哪些场景?

目录 二、Rust 适合哪些场景&#xff1f; 三、Rust 社区的发展趋势如何&#xff1f; 四、Rust 快速搭建一个WebServer服务器 一、Rust是什么&#xff1f; Rust是一门赋予每个人构建可靠且高效软件能力的语言。 Rust 程序设计语言 一门帮助每个人构建可靠且高效软件的语言。…

Python写了for i in range(10)却只打印一遍?

题目&#xff1a;定义一个两个参数的重复打印函数&#xff0c;第一个参数指定要打印的字符串&#xff0c;第二个参数指定要重复打印的次数&#xff0c;在主程序中调用该函数&#xff0c;打印10遍你的学号姓名。 为什么调用函数后结果只打印了一遍? 看了题目感觉就很诡异&#…

爬虫-无限debug场景 解决方式

解决无限debug 场景1 1. 鼠标右键 选择 continue to here&#xff08;此处不停留&#xff09;2. 鼠标右键 选择 edite breakpoint 设置 10 保证条件不成立 这行永远不执行3.方法置空 1. 方法调用加断点2. 控制台 setInterval function name() {}4. 替换文件 5. hoo…

Apache SeaTunnel 正式发布2.3.5版本,功能增强及多个Bug修复

经过两个月的筹备&#xff0c;我们在2.3.4版本基础上进行了新一轮的迭代&#xff0c;本次更新不仅修复了多个关键问题&#xff0c;还引入了若干重要功能增强和性能优化。 在此&#xff0c;我们先提前感谢社区成员的贡献和支持&#xff0c;如果你想升级最新的版本&#xff0c;快…

websocket最大数量的限制问题

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 http://218.75.87.38:9666/ 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a; h…

安全 | 开源入侵防御系统 Snort

目录 Snort 概要 入侵预防系统模式 数据包记录器和嗅探器模式 网络安全学习路线 &#xff08;2024最新整理&#xff09; 学习资料的推荐 1.视频教程 2.SRC技术文档&PDF书籍 3.大厂面试题 特别声明&#xff1a; Snort 概要 Snort 概要 是世界上最重要的开源入…

《十日终焉》中的定律整理-向虫队学习(举例+持续更新)

1、二八定律 二八定律&#xff0c;又称帕累托法则&#xff0c;也叫巴莱多定律。 是19世纪末20世纪初意大利经济学家巴莱多发明的。其中指出&#xff0c;约仅有20%的因素影响80%的结果。也就是说&#xff1a;所有变因中&#xff0c;最重要的仅有20%&#xff0c;虽然剩余的80%占…

实习体验报告怎么写:AI产品助理实习经历

笔灵实习体验报告模版免费分享&#xff0c;更多需要可以点击使用⬇️ https://ibiling.cn/scene/inex?fromcsdnsx 一、实习背景与目的在过去的几个月里&#xff0c;我有幸在一家知名科技公司实习&#xff0c;担任AI产品助理的角色。这次实习让我有机会深入了解AI领域&#x…