竞赛选题 基于深度学习的中文情感分类 - 卷积神经网络 情感分类 情感分析 情感识别 评论情感分类

文章目录

  • 1 前言
  • 2 情感文本分类
    • 2.1 参考论文
    • 2.2 输入层
    • 2.3 第一层卷积层:
    • 2.4 池化层:
    • 2.5 全连接+softmax层:
    • 2.6 训练方案
  • 3 实现
    • 3.1 sentence部分
    • 3.2 filters部分
    • 3.3 featuremaps部分
    • 3.4 1max部分
    • 3.5 concat1max部分
    • 3.6 关键代码
  • 4 实现效果
    • 4.1 测试英文情感分类效果
    • 4.2 测试中文情感分类效果
  • 5 调参实验结论
  • 6 建议
  • 7 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的中文情感分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 情感文本分类

2.1 参考论文

Convolutional Neural Networks for Sentence
Classification

模型结构

在这里插入图片描述

在短文本分析任务中,由于句子句长长度有限、结构紧凑、能够独立表达意思,使得CNN在处理这一类问题上成为可能,主要思想是将ngram模型与卷积操作结合起来

2.2 输入层

如图所示,输入层是句子中的词语对应的wordvector依次(从上到下)排列的矩阵,假设句子有 n 个词,vector的维数为 k ,那么这个矩阵就是 n
× k 的(在CNN中可以看作一副高度为n、宽度为k的图像)。

这个矩阵的类型可以是静态的(static),也可以是动态的(non static)。静态就是word
vector是固定不变的,而动态则是在模型训练过程中,word vector也当做是可优化的参数,通常把反向误差传播导致word
vector中值发生变化的这一过程称为Fine tune。(这里如果word
vector如果是随机初始化的,不仅训练得到了CNN分类模型,还得到了word2vec这个副产品了,如果已经有训练的word
vector,那么其实是一个迁移学习的过程)

对于未登录词的vector,可以用0或者随机小的正数来填充。

2.3 第一层卷积层:

输入层通过卷积操作得到若干个Feature Map,卷积窗口的大小为 h ×k ,其中 h 表示纵向词语的个数,而 k 表示word
vector的维数。通过这样一个大型的卷积窗口,将得到若干个列数为1的Feature Map。(熟悉NLP中N-GRAM模型的读者应该懂得这个意思)。

2.4 池化层:

接下来的池化层,文中用了一种称为Max-over-timePooling的方法。这种方法就是简单地从之前一维的Feature
Map中提出最大的值,文中解释最大值代表着最重要的信号。可以看出,这种Pooling方式可以解决可变长度的句子输入问题(因为不管Feature
Map中有多少个值,只需要提取其中的最大值)。最终池化层的输出为各个Feature Map的最大值们,即一个一维的向量。

2.5 全连接+softmax层:

池化层的一维向量的输出通过全连接的方式,连接一个Softmax层,Softmax层可根据任务的需要设置(通常反映着最终类别上的概率分布)。

2.6 训练方案

在倒数第二层的全连接部分上使用Dropout技术,Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了,它是防止模型过拟合的一种常用的trikc。同时对全连接层上的权值参数给予L2正则化的限制。这样做的好处是防止隐藏层单元自适应(或者对称),从而减轻过拟合的程度。

在样本处理上使用minibatch方式来降低一次模型拟合计算量,使用shuffle_batch的方式来降低各批次输入样本之间的相关性(在机器学习中,如果训练数据之间相关性很大,可能会让结果很差、泛化能力得不到训练、这时通常需要将训练数据打散,称之为shuffle_batch)。

3 实现

在这里插入图片描述
我们以上图为例,图上用红色标签标注了5部分,结合这5个标签,具体解释下整个过程的操作,来看看CNN如何解决文本分类问题的。

3.1 sentence部分

上图句子为“[I like this movie very much!”
,一共有两个单词加上一个感叹号,关于这个标点符号,不同学者有不同的操作,比如去除标点符号。在这里我们先不去除,那么整个句子有7个词,词向量维度为5,那么整个句子矩阵大小为7x5

3.2 filters部分

filters的区域大小可以使不同的,在这里取(2,3,4)3种大小,每种大小的filter有两个不同的值的filter,所以一共是有6个filter。

3.3 featuremaps部分

我们在句子矩阵和过滤器矩阵填入一些值,那么我们可以更好理解卷积计算过程,这和CNN原理那篇文章一样

在这里插入图片描述

比如我们取大小为2的filter,最开始与句子矩阵的前两行做乘积相加,得到0.6 x 0.2 + 0.5 x 0.1 + … + 0.1 x 0.1 =
0.51,然后将filter向下移动1个位置得到0.53.最终生成的feature map大小为(7-2+1x1)=6。
为了获得feature map,我们添加一个bias项和一个激活函数,比如Relu

3.4 1max部分

因为不同大小的filter获取到的feature map大小也不一样,为了解决这个问题,然后添加一层max-
pooling,选取一个最大值,相同大小的组合在一起

3.5 concat1max部分

经过max-pooling操作之后,我们将固定长度的向量给sofamax,来预测文本的类别。

3.6 关键代码

下面是利用Keras实现的CNN文本分类部分代码:

# 创建tensorprint("正在创建模型...")inputs=Input(shape=(sequence_length,),dtype='int32')embedding=Embedding(input_dim=vocabulary_size,output_dim=embedding_dim,input_length=sequence_length)(inputs)reshape=Reshape((sequence_length,embedding_dim,1))(embedding)# cnnconv_0=Conv2D(num_filters,kernel_size=(filter_sizes[0],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)conv_1=Conv2D(num_filters,kernel_size=(filter_sizes[1],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)conv_2=Conv2D(num_filters,kernel_size=(filter_sizes[2],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)maxpool_0=MaxPool2D(pool_size=(sequence_length-filter_sizes[0]+1,1),strides=(1,1),padding='valid')(conv_0)maxpool_1=MaxPool2D(pool_size=(sequence_length-filter_sizes[1]+1,1),strides=(1,1),padding='valid')(conv_1)maxpool_2=MaxPool2D(pool_size=(sequence_length-filter_sizes[2]+1,1),strides=(1,1),padding='valid')(conv_2)concatenated_tensor = Concatenate(axis=1)([maxpool_0, maxpool_1, maxpool_2])flatten = Flatten()(concatenated_tensor)dropout = Dropout(drop)(flatten)output = Dense(units=2, activation='softmax')(dropout)model=Model(inputs=inputs,outputs=output)**main.py**import osos.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"   # see issue #152os.environ["CUDA_VISIBLE_DEVICES"] = ""import reimport numpy as npfrom flask import Flask, render_template, requestfrom keras.models import load_modelfrom data_helpers_english import build_input_englishfrom data_helpers_chinese import build_input_chineseapp = Flask(__name__)en_model = load_model('results/weights.007-0.7618.hdf5')ch_model = load_model('results/chinese.weights.003-0.9083.hdf5')# load 进来模型紧接着就执行一次 predict 函数print('test train...')print(en_model.predict(np.zeros((1, 56))))print(ch_model.predict(np.zeros((1, 50))))print('test done.')def en_predict(input_x):sentence = input_xinput_x = build_input_english(input_x)y_pred = en_model.predict(input_x)result = list(y_pred[0])result = {'sentence': sentence, 'positive': result[1], 'negative': result[0]}return resultdef ch_predict(input_x):sentence = input_xinput_x = build_input_chinese(input_x)y_pred = ch_model.predict(input_x)result = list(y_pred[0])result = {'sentence': sentence, 'positive': result[1], 'negative': result[0]}return result@app.route('/classification', methods=['POST', 'GET'])def english():if request.method == 'POST':review = request.form['review']# 来判断是中文句子/还是英文句子review_flag = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", review)  # 去除数字review_flag = re.sub("[\s+\.\!\/_,$%^*(+\"\')]+|[+——()?【】“”!,。?、~@#¥%……&*()]+", "", review_flag)if review_flag:result = en_predict(review)# result = {'sentence': 'hello', 'positive': '03.87878', 'negative': '03.64465'}return render_template('index.html', result=result)else:result = ch_predict(review)# result = {'sentence': 'hello', 'positive': '03.87878', 'negative': '03.64465'}return render_template('index.html', result=result)return render_template('index.html')## if __name__ == '__main__':#     app.run(host='0.0.0.0', debug=True)

4 实现效果

4.1 测试英文情感分类效果

在这里插入图片描述
准训练结果:验证集76%左右

4.2 测试中文情感分类效果

在这里插入图片描述

准训练结果:验证集91%左右

5 调参实验结论

  • 由于模型训练过程中的随机性因素,如随机初始化的权重参数,mini-batch,随机梯度下降优化算法等,造成模型在数据集上的结果有一定的浮动,如准确率(accuracy)能达到1.5%的浮动,而AUC则有3.4%的浮动;
  • 词向量是使用word2vec还是GloVe,对实验结果有一定的影响,具体哪个更好依赖于任务本身;
  • Filter的大小对模型性能有较大的影响,并且Filter的参数应该是可以更新的;
  • Feature Map的数量也有一定影响,但是需要兼顾模型的训练效率;
  • 1-max pooling的方式已经足够好了,相比于其他的pooling方式而言;
  • 正则化的作用微乎其微。

6 建议

  • 使用non-static版本的word2vec或者GloVe要比单纯的one-hot representation取得的效果好得多;
  • 为了找到最优的过滤器(Filter)大小,可以使用线性搜索的方法。通常过滤器的大小范围在1-10之间,当然对- 于长句,使用更大的过滤器也是有必要的;
  • Feature Map的数量在100-600之间;
  • 可以尽量多尝试激活函数,实验发现ReLU和tanh两种激活函数表现较佳;
  • 使用简单的1-max pooling就已经足够了,可以没必要设置太复杂的pooling方式;
  • 当发现增加Feature Map的数量使得模型的性能下降时,可以考虑增大正则的力度,如调高dropout的概率;
  • 为了检验模型的性能水平,多次反复的交叉验证是必要的,这可以确保模型的高性能并不是偶然。

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/83506.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

知识库系统推荐,强大的全文检索与文档分类管理功能

在我们日常企业运营管理过程中,会积累大量的文档资料,对于我们全体成员来说,这些知识文档都是巨大的财富,所以整合并搭建一套知识库系统是非常有必要的。 知识库系统推荐 我们日常工作中产生大量的文档,随着存储技术的…

pte初步认识学习

我们的时间的确很少,但是我们每天都乐意将珍贵的时间浪费在大量毫无意义的事情上 目录 pte介绍 PTE口语评分规则 pte架构 计算机科学23 QS排名 《芭比》 pte介绍 PTE口语评分规则 有抑扬顿挫 对于连读 不能回读 native pte对于个别单词没有读好&#xff0c…

【性能优化下】组织结构同步优化二,全量同步/增量同步,断点续传实现方式

看到这一篇文章的 xdm ,应该对组织结构同步有一些想法了吧,如果没有,可以看前面两篇文章,可以通过如下地址查看一下: 【性能优化上】第三方组织结构同步优化一,你 get 到了吗? 坑爹&#xff0c…

设计模式Java实战

文章目录 一、前置1.1 目的1.2 面向对象1.3 接口和抽象类 二、七大设计原则2.1 单一职责2.2 接口隔离原则2.3 依赖倒转原则2.4 里氏替换原则2.5 开闭原则2.6 不要重复原则2.7 迪米特最少知道法则 三、23种设计模式3.1创建型:创建对象3.1.1 单例模式定义最佳实践场景…

servlet中doGet方法无法读取body中的数据

servlet中doGet方法不支持读取body中的数据。

10万单词例句表单词句子ACCESS\EXCEL数据库

原本我以为《3万5千英语句子英语例句大全ACCESS数据库》例句已经够多了,没想到今天遇到一个10万条英语单词例句的数据,非常适合与单词词典进行关联学习,例句多了单词的用法以及句子的掌握都更有效率。 截图下方有显示“共有记录数”&#xff…

一台主机外接两台显示器

一台主机外接两台显示器 写在最前面双屏配置软件双屏跳转 写在最前面 在使用电脑时需要运行多个程序,时不时就要频繁的切换,很麻烦 但就能用双屏显示来解决这个问题,用一台主机控制,同时外接两台显示器并显示不同画面。 参考&a…

100G QSFP28 100km光模块最新解决方案

随着信息时代的到来,数据传输的速度和距离要求越来越高。目前,易天光通信发布了具有超低成本、可实现100G超长距离传输新方案——100G QSFP28 100km光模块,该方案是在100G ZR4 80km光模块上的全面升级。 一、产品概述 100G ZR4 100km是专为…

【探索Linux】—— 强大的命令行工具 P.9(进程地址空间)

阅读导航 前言一、内存空间分布二、什么是进程地址空间1. 概念2. 进程地址空间的组成 三、进程地址空间的设计原理1. 基本原理2. 虚拟地址空间 概念 大小和范围 作用 虚拟地址空间的优点 3. 页表 四、为什么要有地址空间五、总结温馨提示 前言 前面我们讲了C语言的基础知识&am…

【web开发】7、Django(2)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、部门列表二、部门管理(增删改)三、用户管理过渡到modelform组件四、modelform实例:靓号操作五、自定义分页组件六、datepick…

Pytest接口自动化测试实战演练

结合单元测试框架pytest数据驱动模型allure 目录 api: 存储测试接口 conftest.py :设置前置操作 目前前置操作:1、获取token并传入headers,2、获取命令行参数给到环境变量,指定运行环境 commmon:存储封装的公共方法 connect_mysq…

集成Activiti-Modeler流程设计器

集成Activiti-Modeler流程设计器 Activiti Modeler 是 Activiti 官方提供的一款在线流程设计的前端插件,可以方便流程设计与开发人员绘制流程图,保存流程模型,部署至流程定义等等。 1、材料准备 首先我们需要获取activiti-explorer.zip&…

zabbix监控平台部署(二)

目录 一、自定义监控 二、Nginx监控 三、监控mysql 四、钉钉告警 五、163邮箱报警 总结 zabbix5.0 一、自定义监控 zabbix-agent(147) agent端操作 vim /etc/zabbix/zabbix_agentd.conf 在配置未文件末尾添加 UserParametermemory_userd,free…

vue修改node_modules打补丁步骤和注意事项

当我们使用 npm 上的第三方依赖包,如果发现 bug 时,怎么办呢? 想想我们在使用第三方依赖包时如果遇到了bug,通常解决的方式都是绕过这个问题,使用其他方式解决,较为麻烦。或者给作者提个issue,然…

【Java 基础篇】Java后台线程和守护线程详解

在Java多线程编程中,有两种特殊类型的线程:后台线程(Daemon Thread)和守护线程(Daemon Thread)。这两种线程在一些特定的场景下非常有用,但也需要谨慎使用。本文将详细介绍后台线程和守护线程的…

(JavaEE)(多线程案例)线程池 (简单介绍了工厂模式)(含经典面试题ThreadPoolExector构造方法)

线程诞生的意义,是因为进程的创建/销毁,太重了(比较慢),虽然和进程比,线程更快了,但是如果进一步提高线程创建销毁的频率,线程的开销就不能忽视了。 这时候我们就要找一些其他的办法…

Ansible之Playbook的任务控制

一)Ansible 任务控制基本介绍 这⾥主要来介绍PlayBook中的任务控制。 任务控制类似于编程语⾔中的if … 、for … 等逻辑控制语句。 这⾥我们给出⼀个实际场景应⽤案例去说明在PlayBook中,任务控制如何应⽤。 在下⾯的PlayBook中,我们创建了…

pnpm入门教程

一、概述 1、更小 使用 npm 时,依赖每次被不同的项目使用,都会重复安装一次。 而在使用 pnpm 时,依赖会被存储在内容可寻址的存储中。 2、更快 依赖解析。 仓库中没有的依赖都被识别并获取到仓库。目录结构计算。 node_modules 目录结构是…

什么是GPT磁盘?介绍GPT(GUID 分区表)磁盘及其优势!

GPT概述 GPT磁盘是什么意思?GPT是全局唯一标识符分区表(GUID Partition Table)的简称,它是硬盘分区表结构的一个标准模式。在我们深入了解GPT磁盘的特性之前须知,MBR磁盘的分区信息直接保存在主引导记录&#xff0…

【探索C语言中VS调试技巧】:提高效率和准确性

文章目录 前言1. 什么是bug?2. 调试是什么?有多重要?2.1 调试是什么?2.2 调试的基本步骤2.3 Debug和Release的介绍 3. Windows环境调试介绍3.1 调试环境的准备3.2 学会快捷键3.3 调试的时候查看程序当前信息3.3.1 查看临时变量的值…