最近LLaMA 2在LLaMA1 的基础上做了很多优化,比如上下文从2048扩展到4096,使用了Grouped-Query Attention(GQA)共享多头注意力的key 和value矩阵,具体可以参考:
关于LLaMA 2 的细节,可以参考如下文章:
Meta发布升级大模型LLaMA 2:开源可商用
揭秘最领先的Llama2中文大模型!
使用QLoRA微调LLaMA 2
安装环境
pip install transformers datasets peft accelerate bitsandbytes safetensors
导入库
import os, sys
import torch
import datasets
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
BitsAndBytesConfig,
DataCollatorForLanguageModeling,
DataCollatorForSeq2Seq,
Trainer,
TrainingArguments,
GenerationConfig
)
from peft import PeftModel, LoraConfig, prepare_model_for_kbit_training, get_peft_model
导入LLaMA 2模型
### config ###
model_id = "NousResearch/Llama-2-7b-hf" # optional meta-llama/Llama-2–7b-chat-hf
max_length = 512
device_map = "auto"
batch_size = 128
micro_batch_size = 32
gradient_accumulation_steps = batch_size // micro_batch_size
# nf4" use a symmetric quantization scheme with 4 bits precision
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# load model from huggingface
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
use_cache=False,
device_map=device_map
)
# load tokenizer from huggingface
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
输出模型的可训练参数量
def print_number_of_trainable_model_parameters(model):
trainable_model_params = 0
all_model_params = 0
for _, param in model.named_parameters():
all_model_params += param.numel()
if param.requires_grad:
trainable_model_params += param.numel()
print(f"trainable model parameters: {trainable_model_params}. All model parameters: {all_model_params} ")
return trainable_model_params
ori_p = print_number_of_trainable_model_parameters(model)
# 输出
# trainable model parameter: 262,410,240
配置LoRA参数
# LoRA config
model = prepare_model_for_kbit_training(model)
peft_config = LoraConfig(
r=8,
lora_alpha=32,
lora_dropout=0.1,
target_modules=["q_proj", "v_proj"],
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, peft_config)
### compare trainable parameters #
peft_p = print_number_of_trainable_model_parameters(model)
print(f"# Trainable Parameter \nBefore: {ori_p} \nAfter: {peft_p} \nPercentage: {round(peft_p / ori_p * 100, 2)}")
# 输出
# trainable model parameter: 4,194,304
r:更新矩阵的秩,也称为Lora注意力维度。较低的秩导致具有较少可训练参数的较小更新矩阵。增加r(不超过32)将导致更健壮的模型,但同时会导致更高的内存消耗。
lora_lpha:控制lora比例因子
target_modules:是一个模块名称列表,如“q_proj”和“v_proj“,用作LoRA模型的目标。具体的模块名称可能因基础模型而异。
bias:指定是否应训练bias参数。可选参数为:“none”、“all”或“lora_only”。
输出LoRA Adapter的参数,发现只占原模型的不到2%。
在微调LLaMA 2之前,我们看一下LLaMA 2的生成效果
### generate ###
prompt = "Write me a poem about Singapore."
inputs = tokenizer(prompt, return_tensors="pt")
generate_ids = model.generate(inputs.input_ids, max_length=64)
print('\nAnswer: ', tokenizer.decode(generate_ids[0]))
res = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(res)
当要求模型写一首关于新加坡的诗时,产生的输出似乎相当模糊和重复,这表明模型很难提供连贯和有意义的回应。
微调数据加载
为了方便演示,我们使用开源的databricks/databricks-dolly-15k,数据格式如下:
{
'instruction': 'Why can camels survive for long without water?',
'context': '',
'response': 'Camels use the fat in their humps to keep them filled with energy and hydration for long periods of time.',
'category': 'open_qa',
}
要揭秘LLM能力,构建Prompt是至关重要,通常的Prompt形式有三个字段:Instruction、Input(optional)、Response。由于Input是可选的,因为这里设置了两种prompt_template,分别是有Input 的prompt_input和无Input 的prompt_no_input,代码如下:
max_length = 256
dataset = datasets.load_dataset(
"databricks/databricks-dolly-15k", split='train'
)
### generate prompt based on template ###
prompt_template = {
"prompt_input": \
"Below is an instruction that describes a task, paired with an input that provides further context.\
Write a response that appropriately completes the request.\
\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n",
"prompt_no_input": \
"Below is an instruction that describes a task.\
Write a response that appropriately completes the request.\
\n\n### Instruction:\n{instruction}\n\n### Response:\n",
"response_split": "### Response:"
}
def generate_prompt(instruction, input=None, label=None, prompt_template=prompt_template):
if input:
res = prompt_template["prompt_input"].format(
instruction=instruction, input=input)
else:
res = prompt_template["prompt_no_input"].format(
instruction=instruction)
if label:
res = f"{res}{label}"
return res
使用generate_prompt函数把instruction, context和response拼接起来;然后进行tokenize分词处理,转换为input_ids和attention_mask,为了让模型可以预测下一个token,设计了类似input_ids的labels便于右移操作;
def tokenize(tokenizer, prompt, max_length=max_length, add_eos_token=False):
result = tokenizer(
prompt,
truncation=True,
max_length=max_length,
padding=False,
return_tensors=None)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = generate_prompt(
data_point["instruction"],
data_point["context"],
data_point["response"],
)
tokenized_full_prompt = tokenize(tokenizer, full_prompt)
user_prompt = generate_prompt(data_point["instruction"], data_point["context"])
tokenized_user_prompt = tokenize(tokenizer, user_prompt)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
mask_token = [-100] * user_prompt_len
tokenized_full_prompt["labels"] = mask_token + tokenized_full_prompt["labels"][user_prompt_len:]
return tokenized_full_prompt
dataset = dataset.train_test_split(test_size=1000, shuffle=True, seed=42)
cols = ["instruction", "context", "response", "category"]
train_data = dataset["train"].shuffle().map(generate_and_tokenize_prompt, remove_columns=cols)
val_data = dataset["test"].shuffle().map(generate_and_tokenize_prompt, remove_columns=cols,)
模型训练
args = TrainingArguments(
output_dir="./llama-7b-int4-dolly",
num_train_epochs=20,
max_steps=200,
fp16=True,
optim="paged_adamw_32bit",
learning_rate=2e-4,
lr_scheduler_type="constant",
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
gradient_checkpointing=True,
group_by_length=False,
logging_steps=10,
save_strategy="epoch",
save_total_limit=3,
disable_tqdm=False,
)
trainer = Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=args,
data_collator=DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True),
)
# silence the warnings. re-enable for inference!
model.config.use_cache = False
trainer.train()
model.save_pretrained("llama-7b-int4-dolly")
模型测试
模型训练几个小时结束后,我们合并预训练模型Llama-2–7b-hf和LoRA参数,我们还是以“Write me a poem about Singapore”测试效果,代码如下:
# model path and weight
model_id = "NousResearch/Llama-2-7b-hf"
peft_path = "./llama-7b-int4-dolly"
# loading model
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
use_cache=False,
device_map="auto"
)
# loading peft weight
model = PeftModel.from_pretrained(
model,
peft_path,
torch_dtype=torch.float16,
)
model.eval()
# generation config
generation_config = GenerationConfig(
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4, # beam search
)
# generating reply
with torch.no_grad():
prompt = "Write me a poem about Singapore."
inputs = tokenizer(prompt, return_tensors="pt")
generation_output = model.generate(
input_ids=inputs.input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=64,
)
print('\nAnswer: ', tokenizer.decode(generation_output.sequences[0]))
生成模型中参数temperature、top-k、top-p和num_beam含义可以参考:https://github.com/ArronAI007/Awesome-AGI/blob/main/LLM%E4%B9%8BGenerate%E4%B8%AD%E5%8F%82%E6%95%B0%E8%A7%A3%E8%AF%BB.ipynb
参考文献:
[1] https://ai.plainenglish.io/fine-tuning-llama2-0-with-qloras-single-gpu-magic-1b6a6679d436
[2] https://github.com/ChanCheeKean/DataScience/blob/main/13%20-%20NLP/E04%20-%20Parameter%20Efficient%20Fine%20Tuning%20(PEFT).ipynb