flink kafka的enableCommitOnCheckpoints 和 enable.auto.commit 参数

背景

每次使用flink消费kafka消息的时候我就被这两个参数enableCommitOnCheckpoints 和 enable.auto.commit困扰,本文就来从源码看看这两个参数的作用

enableCommitOnCheckpoints 和 enable.auto.commit参数

1.FlinkKafkaConsumerBase的open方法,查看offsetCommitMode的赋值

public void open(Configuration configuration) throws Exception {
// determine the offset commit mode
this.offsetCommitMode = OffsetCommitModes.fromConfiguration(
getIsAutoCommitEnabled(),
enableCommitOnCheckpoints,
((StreamingRuntimeContext) getRuntimeContext()).isCheckpointingEnabled());}

2.OffsetCommitModes.fromConfiguration方法

public static OffsetCommitMode fromConfiguration(
boolean enableAutoCommit,
boolean enableCommitOnCheckpoint,
boolean enableCheckpointing) {if (enableCheckpointing) {
// if checkpointing is enabled, the mode depends only on whether committing on checkpoints is enabled
return (enableCommitOnCheckpoint) ? OffsetCommitMode.ON_CHECKPOINTS : OffsetCommitMode.DISABLED;
} else {
// else, the mode depends only on whether auto committing is enabled in the provided Kafka properties
return (enableAutoCommit) ? OffsetCommitMode.KAFKA_PERIODIC : OffsetCommitMode.DISABLED;
}
}

从这个代码可知,enableCommitOnCheckpoint 和 enableAutoCommit是不会同时存在的,也就是flink如果在checkpoint的时候提交偏移,他就肯定不会设置enableAutoCommit自动提交,反之亦然

enableCommitOnCheckpoint 提交偏移的关键代码

1.FlinkKafkaConsumerBase.snapshotState方法

public final void snapshotState(FunctionSnapshotContext context) throws Exception {
if (!running) {
LOG.debug("snapshotState() called on closed source");
} else {
unionOffsetStates.clear();final AbstractFetcher<?, ?> fetcher = this.kafkaFetcher;
if (fetcher == null) {
// the fetcher has not yet been initialized, which means we need to return the
// originally restored offsets or the assigned partitions
for (Map.Entry<KafkaTopicPartition, Long> subscribedPartition : subscribedPartitionsToStartOffsets.entrySet()) {
unionOffsetStates.add(Tuple2.of(subscribedPartition.getKey(), subscribedPartition.getValue()));
}
//  这里如果是checkpoint模式会在checkpoint的时候保存offset到状态中
if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {
// the map cannot be asynchronously updated, because only one checkpoint call can happen
// on this function at a time: either snapshotState() or notifyCheckpointComplete()
pendingOffsetsToCommit.put(context.getCheckpointId(), restoredState);
}}

2.FlinkKafkaConsumerBase.notifyCheckpointComplete方法

@Override
public final void notifyCheckpointComplete(long checkpointId) throws Exception {
final AbstractFetcher<?, ?> fetcher = this.kafkaFetcher;
final int posInMap = pendingOffsetsToCommit.indexOf(checkpointId);fetcher.commitInternalOffsetsToKafka(offsets, offsetCommitCallback);

enable.auto.commit参数

1.KafkaConsumerThread.run线程

if (records == null) {
try {
records = consumer.poll(pollTimeout);
}
catch (WakeupException we) {
continue;
}
}

2.KafkaConsumer的poll方法

private ConsumerRecords<K, V> poll(final Timer timer, final boolean includeMetadataInTimeout) {
acquireAndEnsureOpen();
try {
this.kafkaConsumerMetrics.recordPollStart(timer.currentTimeMs());if (this.subscriptions.hasNoSubscriptionOrUserAssignment()) {
throw new IllegalStateException("Consumer is not subscribed to any topics or assigned any partitions");
}// poll for new data until the timeout expires
do {
client.maybeTriggerWakeup();
//  updateAssignmentMetadataIfNeeded方法是关键
if (includeMetadataInTimeout) {
if (!updateAssignmentMetadataIfNeeded(timer)) {
return ConsumerRecords.empty();
}
} else {
while (!updateAssignmentMetadataIfNeeded(time.timer(Long.MAX_VALUE))) {
log.warn("Still waiting for metadata");
}
}final Map<TopicPartition, List<ConsumerRecord<K, V>>> records = pollForFetches(timer);
if (!records.isEmpty()) {
// before returning the fetched records, we can send off the next round of fetches
// and avoid block waiting for their responses to enable pipelining while the user
// is handling the fetched records.
//
// NOTE: since the consumed position has already been updated, we must not allow
// wakeups or any other errors to be triggered prior to returning the fetched records.
if (fetcher.sendFetches() > 0 || client.hasPendingRequests()) {
client.transmitSends();
}return this.interceptors.onConsume(new ConsumerRecords<>(records));
}
} while (timer.notExpired());return ConsumerRecords.empty();
} finally {
release();
this.kafkaConsumerMetrics.recordPollEnd(timer.currentTimeMs());
}
}

3.KafkaConsumer.updateAssignmentMetadataIfNeeded方法

boolean updateAssignmentMetadataIfNeeded(final Timer timer) {
if (coordinator != null && !coordinator.poll(timer)) {
return false;
}return updateFetchPositions(timer);
}4.ConsumerCoordinator.poll方法public boolean poll(Timer timer) {
maybeUpdateSubscriptionMetadata();invokeCompletedOffsetCommitCallbacks();if (subscriptions.partitionsAutoAssigned()) {
if (protocol == null) {
throw new IllegalStateException("User configured " + ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG +
" to empty while trying to subscribe for group protocol to auto assign partitions");
}
// Always update the heartbeat last poll time so that the heartbeat thread does not leave the
// group proactively due to application inactivity even if (say) the coordinator cannot be found.
pollHeartbeat(timer.currentTimeMs());
if (coordinatorUnknown() && !ensureCoordinatorReady(timer)) {
return false;
}if (rejoinNeededOrPending()) {
// due to a race condition between the initial metadata fetch and the initial rebalance,
// we need to ensure that the metadata is fresh before joining initially. This ensures
// that we have matched the pattern against the cluster's topics at least once before joining.
if (subscriptions.hasPatternSubscription()) {
// For consumer group that uses pattern-based subscription, after a topic is created,
// any consumer that discovers the topic after metadata refresh can trigger rebalance
// across the entire consumer group. Multiple rebalances can be triggered after one topic
// creation if consumers refresh metadata at vastly different times. We can significantly
// reduce the number of rebalances caused by single topic creation by asking consumer to
// refresh metadata before re-joining the group as long as the refresh backoff time has
// passed.
if (this.metadata.timeToAllowUpdate(timer.currentTimeMs()) == 0) {
this.metadata.requestUpdate();
}if (!client.ensureFreshMetadata(timer)) {
return false;
}maybeUpdateSubscriptionMetadata();
}if (!ensureActiveGroup(timer)) {
return false;
}
}
} else {
// For manually assigned partitions, if there are no ready nodes, await metadata.
// If connections to all nodes fail, wakeups triggered while attempting to send fetch
// requests result in polls returning immediately, causing a tight loop of polls. Without
// the wakeup, poll() with no channels would block for the timeout, delaying re-connection.
// awaitMetadataUpdate() initiates new connections with configured backoff and avoids the busy loop.
// When group management is used, metadata wait is already performed for this scenario as
// coordinator is unknown, hence this check is not required.
if (metadata.updateRequested() && !client.hasReadyNodes(timer.currentTimeMs())) {
client.awaitMetadataUpdate(timer);
}
}
//  这里是重点
maybeAutoCommitOffsetsAsync(timer.currentTimeMs());
return true;
}

5.ConsumerCoordinatormaybeAutoCommitOffsetsAsync方法

public void maybeAutoCommitOffsetsAsync(long now) {
if (autoCommitEnabled) {
nextAutoCommitTimer.update(now);
if (nextAutoCommitTimer.isExpired()) {
nextAutoCommitTimer.reset(autoCommitIntervalMs);
doAutoCommitOffsetsAsync();
}
}
}

看到没,这里就是判断autoCommitEnabled的地方,这里如果打开了自动提交功能的话,就会进行offset的提交

特别重要的两点

1.kafkaconsumer当开始进行消费时,即使不提交任何偏移量,也不影响它消费消息,他还是能正常消费kafka主题的消息,这里提交偏移的主要作用在于当kafkaconsumer断线然后需要重连kafka broker进行消费时,此时它一般会从它最后提交的offset位置开始消费(此时还依赖于没有设置startFromLatest,startFromEarliest,startFromTimeStamp的情况下),这才是consumer提交offset偏移的最大意义

2.对于flink来说,由于每次重启的时候,flink的consumer都会从checkpoint中把偏移取出来并设置,所以flink的consumer在消息消费过程中无论通过enableCommitOnCheckpoint 还是enableAutoCommit提交的偏移并没有意义,因为并没有使用到,它的意义只在于flink没有从checkpoint中启动时,此时flink的consumer才会从enableCommitOnCheckpoint 、enableAutoCommit提交的偏移开始消费消息(此时还依赖于没有设置startFromLatest,startFromEarliest,startFromTimeStamp的情况下)

参考文章:https://blog.csdn.net/qq_42009500/article/details/119875158

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/834580.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AcWing 1644. 二叉树中的最低公共祖先 题解 线性dp 倍增算法 前序中序构造二叉树

二叉树中的最低公共祖先 题目描述 树中两个结点 U 和 V 的最低公共祖先&#xff08;LCA&#xff09;是指同时具有 U 和 V 作为后代的最深结点。给定二叉树中的任何两个结点&#xff0c;请你找到它们的 LCA。 输入描述 第一行包含两个整数 M 和 N &#xff0c;分别表示询问结…

AlphaFold3: Google DeepMind的的新突破

AlphaFold 3的论文今天在Nature期刊发表啦!这可是AI在生物领域最厉害的突破的最新版本。AlphaFold-3的新招就是用扩散模型去"画出"分子的结构。它一开始先从一团模模糊糊的原子云下手,然后慢慢透过去噪把分子变得越来越清楚。 Alphafold3 我们活在一个从Llama和Sora那…

HTTP协议:通信机制、特点及实践应用

目录 前言 1. 运行机制 2. 通信方式 3. 主要特点 4. 统一资源标识符&#xff08;URL&#xff09; 5. HTTP报文 6. HTTP请求 7. HTTP响应 8. 实体 9. 持续连接 结语 前言 HTTP&#xff08;Hypertext Transfer Protocol&#xff09;是互联网上应用最广泛的一种协议&a…

C# WinForm —— 12 ListBox绑定数据

ListBox加载大量数据时&#xff0c;避免窗体闪烁的方法&#xff1a; 在加载语句的前后分别加上 BeginUpdate()方法 和 EndUpdate()方法 指定一个集合为绑定的数据源 1. 首先&#xff0c;右键项目&#xff0c;添加类 2. 在新建的类文件中添加属性值信息 3. 构建初始化的对象…

Python学习第四部分 函数式编程

文章目录 高阶函数lambda 表达式和匿名函数偏函数闭包map函数reduce函数filter 函数sorted函数 函数式编程主要学习&#xff1a;高阶函数、闭包closure、匿名函数、偏函数&#xff0c;map函数、reduce函数、filter函数、sorted函数 函数式编程是个很古老的概念&#xff0c;最古…

跟TED演讲学英文:Teachers need real feedback by Bill Gates

Teachers need real feedback Link: https://www.ted.com/talks/bill_gates_teachers_need_real_feedback Speaker: Bill Gates Date: May 2013 文章目录 Teachers need real feedbackIntroductionVocabularyTranscriptSummary后记 Introduction Until recently, many teach…

MYSQL-8.调优

性能优化思维 整体思维 木桶效应&#xff1a;系统的性能符合木桶效应&#xff08;一个木桶能装多少水&#xff0c;取决于木桶中最短的那块木板&#xff09;&#xff0c;所以性能优化需要从多个方面去考虑&#xff0c;如架构优化、业务优化、前端优化、中间件调优、网关优化、…

C数据结构:栈

简介 在之前的几篇文章中已经详细讲解了线性表中的 顺序表、单链表。每一种不同的数据结构都有它独特的结构和应用之处&#xff0c;今天将再次给大家介绍一个新的线性表&#xff1a;栈。 1. 栈&#xff1a;一种特殊的线性表&#xff0c;其中只允许在固定的一端进行插入和删除元…

巩固学习3

jieba是优秀的中文分词第三方库。由于中文文本之间每个汉字都是连续书写的&#xff0c;我们需要通过特定的手段来获得其中的每个单词&#xff0c;这种手段就叫分词。而jieba是python计算生态中非常优秀的中文分词第三方库&#xff0c;需要通过安装来使用它。 简单来说&#xff…

Python_AI库 Pandas的loc和iloc的区别与使用实例

Python中Pandas的loc和iloc的区别与使用实例 在Pandas中&#xff0c;loc和iloc是两个常用的方法&#xff0c;用于基于标签&#xff08;label&#xff09;和整数位置&#xff08;integer location&#xff09;来选择数据。尽管两者在功能上有重叠&#xff0c;但它们在用法和性能…

去哪儿网机票服务请求体bella值逆向

作者声明&#xff1a;文章仅供学习交流与参考&#xff01;严禁用于任何商业与非法用途&#xff01;否则由此产生的一切后果均与作者无关&#xff01;如有侵权&#xff0c;请联系作者本人进行删除&#xff01; 一、加密定位 直接全局搜索bella&#xff0c;在可疑的地方下断&…

汇编--栈和寄存器

栈 栈是一种运算受限的线性表&#xff0c;其限定仅在表尾进行插入和删除操作的线性表&#xff0c;表尾也被叫做栈顶。简单概括就是我们对于元素的操作只能够在栈顶进行&#xff0c;也造就了其先进后出的结构特性。 栈 这种内存空间其实本质上有两种操作&#xff1a;将数据放入…

【12572物联网知识学习总结】

一、物联网的定义 物联网就是“物物相连的智能互联网”。它通过射频识别 &#xff08;RFID&#xff09;、红外感应器、全球定位系统、激光扫描器等信息传感 设备&#xff0c;按约定的协议&#xff0c;把任何物品与互联网连接起来&#xff0c;进行信息 交换和通讯&#xff0c;以…

在Ubuntu安装RPM文件

Ubuntu软件源包含数千个deb软件包&#xff0c;可以从Ubuntu软件中心或使用apt命令行安装。 Deb是所有基于Debian的Linux发行版&#xff0c;例如包括Ubuntu&#xff0c;Linux mint等发行版使用的安装包格式。 如果某些软件在Ubuntu软件源中不可用&#xff0c;可以通过启用适当的…

物联网实战--平台篇之(五)账户界面

目录 一、界面框架 二、首页(未登录) 三、验证码登录 四、密码登录 五、帐号注册 六、忘记密码 本项目的交流QQ群:701889554 物联网实战--入门篇https://blog.csdn.net/ypp240124016/category_12609773.html 物联网实战--驱动篇https://blog.csdn.net/ypp240124016/cat…

物联网网关制造生产全流程揭秘!

如果您正有开发和定制物联网网关的计划&#xff0c;找一个专业的物联网设备厂商协助您制造生产物联网网关可以节省大量时间和成本&#xff0c;可以让您能专注于当前核心业务&#xff0c;而无需将精力过多地投入到自己不擅长的领域。 当然&#xff0c;了解物联网网关的测试和制…

HSA-42014和安泰ATA-4014C高压功率放大器对比

企业背景&#xff1a; Aigtek是一家来自中国的专业从事测量仪器研发、生产和销售的高科技企业。公司主要研发和生产功率放大器、功率放大器模块、功率信号源、计量校准源等产品。核心团队主要是来自西安交通大学及西北工业大学的专家教授等联合组成研发团队&#xff0c;目前拥有…

OPC UA(二)

一、配置PC Station 在TIA博途软件平台中配置PC Station&#xff0c;见&#xff08;一&#xff09; 二、使用OPC Scout V10测试通信结果 1. 添加OPC UA Server站点 1.1启动OPC Scout V10 1.2 打开OPC Scout V10&#xff0c;在 Server explorer窗口&#xff0c;查找UA serv…

Linux流量分析工具 | nethogs

在应急过程中&#xff0c;经常会遇到应用访问缓慢&#xff0c;网络阻塞的情况&#xff0c;分析原因可能会想到存在恶意程序把带宽占满的可能。通过这样一个小工具可以快速定位异常占用带宽程序的路径、PID、占用流量大小或是排除由带宽占满导致服务器缓慢的猜想。 一、简介 Ne…

XML Schema(XSD)详解:定义 XML 文档结构合法性的完整指南

XML Schema描述了 XML 文档的结构。XML Schema语言也称为 XML Schema Definition&#xff08;XSD&#xff09;。 <?xml version"1.0"?> <xs:schema xmlns:xs"http://www.w3.org/2001/XMLSchema"><xs:element name"note"><…