摘要Summaries--课时二(Lesson 2)

Daniel 深度碎片 on forums.fast.ai has been kind enough to create summaries, in the form of a list of questions, of every lesson. You can use these summaries to remind yourself what you learned in each lesson, or to preview a lesson before you watch it. Here’s the lesson 2 summary:

  • New exciting content to come
    • Can there be substantial new content given we have already 4 versions and a book?
  • Ways of reading the book
    • How many channels available for us to read the book? (physical, github, colab and others)
  • Extra sweets from the book
    • Are there interesting materials/stories covered by the book not the lecture?
    • Where can you find questionnaires and quizzes of the lectures?
  • aiquizzes.com
    • Where can you get more quizzes of fastai and memorize them forever?
  • Introducing the forum
    • How to make the most out of fastai forum?
  • Students’ works after week 1
  • A Wow moment
    • Will we learn to put model in production today?
  • Find a problem and some data
    • What is the first step before building a model?
  • Access to the magics of Jupyter notebook
    • Do you want to navigate the notebook with a TOC?
    • How about collapsable sections?
    • How about moving between start and end of sections fast?
    • How to install jupyter extensions
  • Download and clean your data
    • Why use ggd rather than bing for searching and downloading images?
    • How to clean/remove broken images?
  • Get to docs quickly
    • How to get basic info, source code, full docs on fastai codes quickly?
  • Resize your data before training
    • How can you specify the resize options to your data?
    • Why should we always use RandomResizedCrop and aug_transforms together?
    • How RandomResizedCrop and aug_transforms differ?
  • Data images instantly transformed not copied
    • When resized, are we making many copies of the image?
  • More epochs for fancy resize
    • How many epochs do we usually go when using RandomResizedCrop and aug_transforms?
  • Confusion matrix: where do models get wrong the most?
    • How to create confusion matrix on your model performance?
    • When to use confusion matrix? (category)-practice
    • How to interpret confusion matrix?
    • What is the most obvious thing does it tell us?
    • How hard is it to tell grizzly and black bears apart?
  • Check out images with worse predictions
    • Do plot_top_losses give us the images with highest losses?
    • Are those images merely ones the model made confidently wrong prediction?-practice
    • Do those images include ones that the model made right prediction unconfidently?
    • What does looking at those high loss images help? (get expert examination or simple data cleaning)
  • What if you want to clean the data a little
    • How to display and make cleaning choices on each of those top loss images in each data folder?-practice
    • Without expert knowledge on telling apart grizzly and black bears, at least we can clean images which mess up teddy bears.
  • Myth breaker: train model and then clean data
    • How can training the model help us see the problem of dataset?-practice
    • Won’t we have more ideas to improve the dataset once we spot the problems of the dataset?
  • Turn off GPU when not using
    • How to use GPU RAM locally without much trouble?
  • Watch first, then watch and code along
    • What is the preferred way of lecture watching and coding by majority of students?
  • A Gradio + hugging face tutorial
  • Git and Github desk
    • Is Github desk a less cool but easier and more robust way to version control than git?
  • Terminal for windows
    • How to set up terminal for windows?
    • Why Jeremy prefer windows than mac?
  • Get started with Hugging Face Spaces
    • go to huggingface.co/spaces and create a new space
  • Get the default App up and running
    • How to use git to download your space folder?
    • How to open vscode to add app.py file?
    • How to use vscode to push your space folder up to hugging face spaces online?
    • then go back to your space on Hugging Face to see the app running
  • Train and download your model
    • Where is the model we are going to train and download from Kaggle notebook?
    • How to export your model after trained it on Kaggle?
    • Where do you download the model?
    • How to open a folder in terminal? open .
    • Make sure the model is downloaded into its own Hugging Face Space folder
  • Predict with loaded model
    • How to load downloaded model to make prediction?
    • How to make prediction with the loaded model?
    • How to export selected cells of a jupyter notebook into a python file?
    • How to see how long a code runs in a jupyter cell?
  • Turn your model into Gradio App locally
    • How to prepare your prediction result into a form gradio prefers? #code
    • How to build a gradio interface for your model?
    • How to launch your app with the model locally?
    • Not in video: run the code on Kaggle in cloud
  • Push this app onto Hugging Face Spaces
    • Make sure to create a new space first, e.g., testing
    • How to turn the notebook into a python script?
    • How to push the folder up to github and run app in cloud?
    • Not in Video: if stuck, check out Tanishq tutorial-shooting
  • How many epochs are ideal for fine tuning?
  • How to save model from colab?
  • How to install fastai properly
    • How to download github/fastai/fastsetup using git? git clone https://github.com/fastai/fastsetup.git
    • How to download and install mamba? ./setup_conda.sh
    • Not in Video: problem of running ./setup_conda.sh
    • How to download and install fastai? mamba install -c fastchan fastai
    • How to install nbdev? mamba install -c fastchan nbdev
    • How to start to use jupyter notebook? jupyter notebook --no-browser
    • Not in Video: other problem related to xcode
  • The workflow summary
  • HuggingFace API + gradio + Javascript = real APP
  • How easy does HuggingFace API work
  • How easy to to get started with JS + HF API + gradio
  • App example of having multiple inputs and outputs
  • App example of combining two models
  • How to turn your model into your own web App with fastpages
  • How to fork a public fastpages for your own use

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/834084.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

跨协议通讯无缝对接:Modbus-BACnet楼宇智能转换器深度解析

在现代化的建筑群里,智能楼宇管理系统如同神经系统,协调着各设备的运行。某大型商业综合体,集购物中心、办公区、酒店于一体,面对着来自不同供应商的设备,如何实现统一管理和高效通讯成了首要挑战。特别是其内部既有采…

List转JSON,JSON转List,Java对象转JSON,JSON转Java对象

引入pom依赖 <dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.67</version></dependency>List转JSON List<String> stringList new ArrayList<>();String json JSON…

ADC模-数转换原理与实现

1. 今日摸鱼计划 今天来学习一下ADC的原理&#xff0c;然后把ADC给实现 ADC芯片:ADC128S102 视频&#xff1a; 18A_基于SPI接口的ADC芯片功能和接口时序介绍_哔哩哔哩_bilibili 18B_使用线性序列机思路分析SPI接口的ADC芯片接口时序_哔哩哔哩_bilibili 18C_基于线性序列机的S…

neo4j-5.11.0安装APOC插件or配置允许使用过程的权限

在已经安装好neo4j和jdk的情况下安装apoc组件&#xff0c;之前使用neo4j-community-4.4.30&#xff0c;可以找到配置apoc-4.4.0.22-all.jar&#xff0c;但是高版本neo4j对应没有apoc-X.X.X-all.jar。解决如下所示&#xff1a; 1.安装好JDK与neo4j 已经安装对应版本的JDK 17.0…

TS学习-类的继承

目录 1&#xff0c;继承的作用2&#xff0c;成员的重写 Override3&#xff0c;类型匹配&#xff08;兼容性&#xff09;4&#xff0c;修饰符5&#xff0c;单根性和传递性 接这篇文章 TS学习-类 1&#xff0c;继承的作用 继承可以描述类与类之间的关系。 如果A和B都是类&#…

MySQL数据库及数据表的创建

1.创建一个名叫 db_classes 的数据库&#xff1a; 创建一个叫 db_classes 的数据库MySQL命令&#xff1a; create database db_classes; 运行效果&#xff1a; 创建数据库后查看该数据库基本信息MySQL命令&#xff1a; show create database db_classes; 运行效果&#xff…

力扣刷题--数组--第三天

今天再做两道二分查找的题目&#xff0c;关于二分查找的知识可看我前两篇博客。话不多说&#xff0c;直接开干&#xff01; 题目1&#xff1a;69.x 的平方根 题目详情&#xff1a;   给你一个非负整数 x &#xff0c;计算并返回 x 的 算术平方根 。由于返回类型是整数&#…

VScode通过ssh远程连接服务器被拒绝:permission denied, please try again

使用场景&#xff1a; 使用windows系统下的vscode远程连接服务器的linux系统&#xff0c;终端提示permission denied, please try again,但是使用cmd是可以远程登录的。 解决办法&#xff1a; 前提条件windows端的vscode安装了ssh远程连接的相关插件Remote - SSH&#xff0c;…

Docker部署Sentinel修改密码

创建Docker容器 docker run -d --name sentinel --restartalways -p 8858:8858 bladex/sentinel-dashboard进入容器 docker exec -it sentinel bash在app.jar所在目录创建application.properties配置文件添加账号密码 auth.usernamesentinel auth.passwordsentinel重启容器 …

Django之rest_framework(六)

一、GenericViewSet类的使用 继承自GenericAPIView,作用也与GenericAPIVIew类似,提供了get_object、get_queryset等方法便于视图的开发 1.1、代码 from rest_framework.viewsets import GenericViewSet from rest_framework.response import Response from rest_framework …

C++基础-编程练习题和答案

文章目录 一、查找插入有序数组的位置二、最高分三、不与最大数相同的数字之和四、最大值和最小值的差五、数字放大六、多余的数七、数字接力八、幸运大抽奖 一、查找插入有序数组的位置 【试题描述】 给你 m 个已经从小到大排好序的整数&#xff0c; 输入一个数 x&#xff0c…

浏览器开发者工具,控制台里读取指定网页节点内容,并保存到文件里

在网页控制台console里&#xff0c;读取body > div.bj-eee > div > div.layout-left > div.topic > div.clearfix.top-hd > div.select-left.pull-left.options-w 中的内容 // 使用querySelector选择单个元素 var element document.querySelector(body &…

Duplicate File Finder Pro for Mac激活版:重复文件清理软件

在繁杂的文件管理中&#xff0c;你是否曾为重复文件而烦恼&#xff1f;Duplicate File Finder Pro for Mac&#xff0c;正是你不可或缺的得力助手。这款专业级工具&#xff0c;能够迅速扫描并定位Mac系统中的重复文件&#xff0c;让你的存储空间恢复清爽。 通过强大的算法支持&…

[C/C++] -- 代理模式

代理模式是一种结构型设计模式&#xff0c;允许一个对象&#xff08;代理&#xff09;控制另一个对象的访问。代理对象通常充当客户端和实际目标对象之间的中间人&#xff0c;从而控制对目标对象的访问&#xff0c;可以在访问前后进行一些额外的处理。 代理模式的优点包括&…

机器视觉_联合编程(二)

链接相机,加载tb,检测 FrameGrabber链接相机拍照 using System; using System.Collections; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tas…

《铁路出行更便捷:火车票预定审批系统的设计与应用》

在现代化的铁路交通管理中&#xff0c;火车票预定审批系统扮演着至关重要的角色。它不仅能够有效管理员工出差、培训等需要乘坐火车的行程&#xff0c;还能够提高审批效率&#xff0c;减少人力成本&#xff0c;确保出行安全。本文将探讨火车票预定审批系统的设计原则和应用场景…

AI大模型系列:编写高质量提示(prompt)的实践技巧

AI大模型系列专栏 文章收录于AI大模型系列专栏 文明基石&#xff0c;文字与数字的起源与演变自然语言处理&#xff0c;从规则到统计的演变AI魔法师&#xff0c;提示工程的力量编写高质量提示&#xff08;prompt&#xff09;的小技巧 编写高质量提示&#xff08;prompt&#x…

图片压缩和尺寸调节工具@图像压缩@分辨率调节@降低图片文件体积和磁盘占用

文章目录 abstract降低图片文件大小的方式相关原理 跨平台免费的压缩工具离线运行的软件在线工具&#x1f47a;windows 系统上的压缩方法windows 照片程序(photo)powertoys image-resizer(分辨率/尺寸调整) windows mspaint(画图工具调整分辨率) abstract 提到图片压缩时&#…

一款支持几分钟视频生成,免费无限制AI视频生成网站

前言 AI可以生成原创中视频了&#xff01; 不是4秒&#xff0c;而是最长达6分钟&#xff0c;官方名为白日梦&#xff0c;将白日梦变成现实&#xff01; 他不是简单的文生图/图生视频 而是将文生图、图生视频、配音字幕、后期剪辑等&#xff0c;打包封装成一条AI视频生产工作…

Axure PR 10 下拉三级菜单设计图

在线预览地址&#xff1a;Untitled Document 程序员必备资源网站&#xff1a;天梦星服务平台 (tmxkj.top) 需要源码设计图联系我wx:19948765606,3块钱拿走