动态规划题目中,常出现背包的相关问题,这里单独挑出来训练
A.01背包
1.01背包模板题
【模板】01背包_牛客题霸_牛客网 (nowcoder.com)
你有一个背包,最多能容纳的体积是V。
现在有n个物品,第i个物品的体积为𝑣𝑖vi ,价值为𝑤𝑖wi。
(1)求这个背包至多能装多大价值的物品?
(2)若背包恰好装满,求至多能装多大价值的物品?
第一问
1.状态表示:用dp[ i ][ j ]表示选到第 i 个物品, 体积不超过 j ,物品的最大价值
2.状态转移方程:dp[ i ][ j ] = max(dp[ i - 1 ][ j ], dp[ i - 1 ][ j - v[ i ] ] + w[ i ] )
3.初始化:无需初始化
4.填表顺序:从上往下每一行
5.返回值:dp[ n ][ V ]
注意:由于 j - v[ i ] 可能小于0,所以需要提前特判
第二问
1.状态表示:用dp[ i ][ j ]表示选到第 i 个物品, 体积恰好 j ,物品的最大价值
2.状态转移方程:dp[ i ][ j ] = max(dp[ i - 1 ][ j ], dp[ i - 1 ][ j - v[ i ] ] + w[ i ] )
3.初始化:根据题目初始化(见注意)
4.填表顺序:从上往下每一行
5.返回值:dp[ n ][ V ]
注意:由于dp状态表示地特殊性,可能存在无法使状态存在的情况,所以我们规定用 - 1 来表示状态不存在,于是在 j >= 1使,dp[ 0 ][ j ] = -1,在打印值时,也需要提前特判
#include<iostream>
#include<vector>
#include<string.h>using namespace std;const int N = 1010;
int n, V, v[N], w[N];int dp[N][N];int main()
{cin >> n >> V;for(int i = 1; i <= n; ++i)cin >> v[i] >> w[i];for(int i = 1; i <= n; ++i)for(int j = 1; j <= V; ++j){dp[i][j] = dp[i - 1][j];if(j >= v[i]) dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);}cout << dp[n][V] << endl;memset(dp, 0, sizeof dp);for(int j = 1; j <= V; ++j) dp[0][j] = -1;for(int i = 1; i <= n; ++i)for(int j = 1; j <= V; ++j){dp[i][j] = dp[i - 1][j];if(j >= v[i] && dp[i - 1][j - v[i]] != -1) dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);}cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;return 0;
}
这是二维ac代码
#include<iostream>
#include<vector>
#include<string.h>using namespace std;const int N = 1010;
int n, V, v[N], w[N];int dp[N];int main()
{cin >> n >> V;for(int i = 1; i <= n; ++i)cin >> v[i] >> w[i];for(int i = 1; i <= n; ++i)for(int j = V; j >= v[i]; --j)dp[j] = max(dp[j], dp[j - v[i]] + w[i]);cout << dp[V] << endl;memset(dp, 0, sizeof dp);for(int j = 1; j <= V; ++j) dp[j] = -1;for(int i = 1; i <= n; ++i)for(int j = V; j >= v[i]; --j)if(dp[j - v[i]] != -1) dp[j] = max(dp[j], dp[j - v[i]] + w[i]);cout << (dp[V] == -1 ? 0 : dp[V]) << endl;return 0;
}
这是一维ac代码
2.分割等和子集
416. 分割等和子集
给你一个 只包含正整数 的 非空 数组 nums
。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等
1.状态表示:用dp[ i ][ j ]表示选到第 i 个数, 和恰好 j 情况是否存在
2.状态转移方程:dp[ i ][ j ] = dp[ i - 1 ][ j ] || ( j >= nums[ i - 1 ] && dp[ i - 1 ][ j - nums[ i - 1 ] ] )
3.初始化:根据题目初始化(见注意)
4.填表顺序:从上往下每一行
5.返回值:dp[ n ][ k ]
注意:将题目转换为找出数组和一半的子序列,k = sum / 2,这样当 j = 0时dp[ i ][ 0 ] = true,且如果sum是奇数也可以直接返回false
class Solution {
public:bool canPartition(vector<int>& nums) {int n = nums.size();int sum = 0;for(int e : nums) sum += e;if(sum % 2) return false;int k = sum / 2;vector<vector<bool>> dp(n + 1, vector<bool>(k + 1));for(int i = 0; i <= n; ++i) dp[i][0] = true;for(int i = 1; i <= n; ++i)for(int j = 1; j <= k; ++j)dp[i][j] = dp[i - 1][j] || (j >= nums[i - 1] && dp[i - 1][j - nums[i - 1]]);return dp[n][k]; }
};
这是二维ac代码
class Solution {
public:bool canPartition(vector<int>& nums) {int n = nums.size();int sum = 0;for(int e : nums) sum += e;if(sum % 2) return false;int k = sum / 2;vector<bool> dp(k + 1);dp[0] = true;for(int i = 1; i <= n; ++i)for(int j = k; j >= nums[i - 1]; --j)dp[j] = dp[j] || dp[j - nums[i - 1]];return dp[k]; }
};
这是一维ac代码
3.目标和
494. 目标和
给你一个非负整数数组 nums
和一个整数 target
。
向数组中的每个整数前添加 '+'
或 '-'
,然后串联起所有整数,可以构造一个 表达式 :
- 例如,
nums = [2, 1]
,可以在2
之前添加'+'
,在1
之前添加'-'
,然后串联起来得到表达式"+2-1"
。
返回可以通过上述方法构造的、运算结果等于 target
的不同 表达式 的数目
转换
设正数和为a,负数和绝对值为b,则 a + b = sum, a - b = target,于是有a = (sum + target) / 2,所以只要找出和为a的子序列即可,注意当(sum + target) 是奇数以及 a 小于0时直接返回0
1.状态表示:用dp[ i ][ j ]表示选到第 i 个数, 和恰好 j 情况数目
2.状态转移方程:dp[ i ][ j ] = dp[ i - 1 ][ j ] + dp[ i - 1 ][ j - nums[ i - 1 ] ]
3.初始化:dp[ 0 ][ 0 ] = 1;
4.填表顺序:从上往下每一行
5.返回值:dp[ n ][ k ]
class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {int sum = 0, n = nums.size();for(int e : nums) sum += e;int k = (target + sum) / 2;if(k < 0 || (sum + target) % 2) return false;vector<vector<int>> dp(n + 1, vector<int>(k + 1));dp[0][0] = 1;for(int i = 1; i <= n; ++i)for(int j = 0; j <= k; ++j){dp[i][j] = dp[i - 1][j];if(j >= nums[i - 1]) dp[i][j] += dp[i - 1][j - nums[i - 1]];}return dp[n][k];}
};
这是二维ac代码
class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {int sum = 0, n = nums.size();for(int e : nums) sum += e;int k = (target + sum) / 2;if(k < 0 || (sum + target) % 2) return false;vector<int> dp(k + 1);dp[0] = 1;for(int i = 1; i <= n; ++i)for(int j = k; j >= nums[i - 1]; --j)dp[j] += dp[j - nums[i - 1]];return dp[k];}
};
这是一维ac代码
4.最后一块石头的重量
1049. 最后一块石头的重量 II
有一堆石头,用整数数组 stones
表示。其中 stones[i]
表示第 i
块石头的重量。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x
和 y
,且 x <= y
。那么粉碎的可能结果如下:
- 如果
x == y
,那么两块石头都会被完全粉碎; - 如果
x != y
,那么重量为x
的石头将会完全粉碎,而重量为y
的石头新重量为y-x
。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0
。
转换,从数组中挑选一堆石头使其接近 sum / 2,再使剩下的石头重量与其做差即可
于是我们要找到重量小于 sum / 2 的最大重量
1.状态表示:用dp[ i ][ j ]表示选到第 i 个数,重量不大于 j 的最大重量
2.状态转移方程:dp[ i ][ j ] = max(dp[ i - 1 ][ j ], dp[ i - 1 ][ j - nums[ i - 1 ] ] + nums[ i - 1 ] )
3.初始化:无需初始化
4.填表顺序:从上往下每一行
5.返回值:dp[ n ][ k ]
class Solution {
public:int lastStoneWeightII(vector<int>& nums) {int sum = 0, n = nums.size();for(int e : nums) sum += e;int k = sum / 2;vector<vector<int>> dp(n + 1, vector<int>(k + 1));for(int i = 1; i <= n; ++i)for(int j = 1; j <= k; ++j){dp[i][j] = dp[i - 1][j];if(j >= nums[i - 1]) dp[i][j] = max(dp[i][j], dp[i - 1][j - nums[i - 1]] + nums[i - 1]);}return sum - dp[n][k] * 2;}
};
这是二维ac代码
class Solution {
public:int lastStoneWeightII(vector<int>& nums) {int sum = 0, n = nums.size();for(int e : nums) sum += e;int k = sum / 2;vector<int> dp(k + 1);for(int i = 1; i <= n; ++i)for(int j = k; j >= nums[i - 1]; --j)dp[j] = max(dp[j], dp[j - nums[i - 1]] + nums[i - 1]);return sum - dp[k] * 2;}
};
这是一维ac代码
B.完全背包
5.完全背包模板题
【模板】完全背包_牛客题霸_牛客网 (nowcoder.com)
你有一个背包,最多能容纳的体积是V。
现在有n种物品,每种物品有任意多个,第i种物品的体积为𝑣𝑖vi ,价值为𝑤𝑖wi。
(1)求这个背包至多能装多大价值的物品?
(2)若背包恰好装满,求至多能装多大价值的物品?
第一问
1.状态表示:用dp[ i ][ j ]表示选到第 i 个物品, 体积不超过 j ,物品的最大价值
2.状态转移方程:dp[ i ][ j ] = max(dp[ i - 1 ][ j ], dp[ i ][ j - v[ i ] ] + w[ i ] )
3.初始化:无需初始化
4.填表顺序:从上往下每一行
5.返回值:dp[ n ][ V ]
第二问
1.状态表示:用dp[ i ][ j ]表示选到第 i 个物品, 体积恰好 j ,物品的最大价值
2.状态转移方程:dp[ i ][ j ] = max(dp[ i - 1 ][ j ], dp[ i ][ j - v[ i ] ] + w[ i ] )
3.初始化:根据题目初始化(见注意)
4.填表顺序:从上往下每一行
5.返回值:dp[ n ][ V ]
注意:由于dp状态表示地特殊性,可能存在无法使状态存在的情况,所以我们规定用 - 1 来表示状态不存在,于是在 j >= 1使,dp[ 0 ][ j ] = -1,在打印值时,也需要提前特判
#include<iostream>
#include<vector>
#include<string.h>using namespace std;const int N = 1010;
int n, V, v[N], w[N];int dp[N][N];int main()
{cin >> n >> V;for(int i = 1; i <= n; ++i)cin >> v[i] >> w[i];for(int i = 1; i <= n; ++i)for(int j = 1; j <= V; ++j){dp[i][j] = dp[i - 1][j];if(j >= v[i]) dp[i][j] = max(dp[i][j], dp[i][j - v[i]] + w[i]);}cout << dp[n][V] << endl;memset(dp, 0, sizeof dp);for(int j = 1; j <= V; ++j) dp[0][j] = -1;for(int i = 1; i <= n; ++i)for(int j = 1; j <= V; ++j){dp[i][j] = dp[i - 1][j];if(j >= v[i] && dp[i][j - v[i]] != -1) dp[i][j] = max(dp[i][j], dp[i][j - v[i]] + w[i]);}cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;return 0;
}
这是二维ac代码
#include<iostream>
#include<vector>
#include<string.h>using namespace std;const int N = 1010;
int n, V, v[N], w[N];int dp[N];int main()
{cin >> n >> V;for(int i = 1; i <= n; ++i)cin >> v[i] >> w[i];for(int i = 1; i <= n; ++i)for(int j = v[i]; j <= V; ++j)dp[j] = max(dp[j], dp[j - v[i]] + w[i]);cout << dp[V] << endl;memset(dp, 0, sizeof dp);for(int j = 1; j <= V; ++j) dp[j] = -1;for(int i = 1; i <= n; ++i)for(int j = v[i]; j <= V; ++j)if(dp[j - v[i]] != -1) dp[j] = max(dp[j], dp[j - v[i]] + w[i]);cout << (dp[V] == -1 ? 0 : dp[V]) << endl;return 0;
}
这是一维ac代码
6.零钱兑换
322. 零钱兑换
给你一个整数数组 coins
,表示不同面额的硬币;以及一个整数 amount
,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1
。
你可以认为每种硬币的数量是无限的
1.状态表示:用dp[ i ][ j ]表示选到第 i 个硬币, 价值恰好等于 j ,最小的数目
2.状态转移方程:dp[ i ][ j ] = min(dp[ i - 1 ][ j ], dp[ i ][ j - coins[ i - 1 ] ] + 1)
3.初始化:dp[ 0 ][ j ] = 0x3f3f3f3f
4.填表顺序:从上往下每一行
5.返回值:dp[ n ][ am ]
注意:由于可能选择方案无法构成 j ,用0x3f3f3f3f来表示该状态不存在,同时在返回值时也需特判
class Solution {
public:int coinChange(vector<int>& coins, int amount) {const int INF = 0x3f3f3f3f;int n = coins.size();vector<vector<int>> dp(n + 1, vector<int>(amount + 1));for(int j = 1; j <= amount; ++j) dp[0][j] = INF;for(int i = 1; i <= n; ++i)for(int j = 1; j <= amount; ++j){dp[i][j] = dp[i - 1][j];if(j >= coins[i - 1]) dp[i][j] = min(dp[i][j], dp[i][j - coins[i - 1]] + 1);}return (dp[n][amount] == INF ? -1 : dp[n][amount]);}
这是二维ac代码
class Solution {
public:int coinChange(vector<int>& coins, int amount) {const int INF = 0x3f3f3f3f;int n = coins.size();vector<int> dp(amount + 1);for(int j = 1; j <= amount; ++j) dp[j] = INF;for(int i = 1; i <= n; ++i)for(int j = coins[i - 1]; j <= amount; ++j)dp[j] = min(dp[j], dp[j - coins[i - 1]] + 1);return (dp[amount] == INF ? -1 : dp[amount]);}
};
这是一维ac代码
7.零钱兑换II
给你一个整数数组 coins
表示不同面额的硬币,另给一个整数 amount
表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0
。
假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
1.状态表示:用dp[ i ][ j ]表示选到第 i 个硬币, 价值恰好等于 j ,组合的总数
2.状态转移方程:dp[ i ][ j ] = dp[ i - 1 ][ j ] + dp[ i ][ j - coins[ i - 1 ] ]
3.初始化:dp[ 0 ][ 0 ] = 1;
4.填表顺序:从上往下每一行
5.返回值:dp[ n ][ am ]
class Solution {
public:int change(int amount, vector<int>& coins) {int n = coins.size();vector<vector<int>> dp(n + 1, vector<int>(amount + 1));dp[0][0] = 1;for(int i = 1; i <= n; ++i)for(int j = 0; j <= amount; ++j){dp[i][j] = dp[i - 1][j];if(j >= coins[i - 1]) dp[i][j] += dp[i][j - coins[i - 1]];}return dp[n][amount];}
};
这是二维ac代码
class Solution {
public:int change(int amount, vector<int>& coins) {int n = coins.size();vector<int> dp(amount + 1);dp[0] = 1;for(int i = 1; i <= n; ++i)for(int j = coins[i - 1]; j <= amount; ++j)dp[j] += dp[j - coins[i - 1]];return dp[amount];}
};
这是一维ac代码
8.完全平方数
给你一个整数 n
,返回 和为 n
的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1
、4
、9
和 16
都是完全平方数,而 3
和 11
不是。
1.状态表示:用dp[ i ][ j ]表示选到第 i 个数, 价值恰好等于 j ,所需平方数的最小数目
2.状态转移方程:dp[ i ][ j ] = dp[ i - 1 ][ j ] + dp[ i ][ j - i * i ] + 1
3.初始化:dp[ 0 ][ 0 ] = 1;其他全部初始化为0x3f3f3f3f
4.填表顺序:从上往下每一行
5.返回值:dp[ n ][ k ]
注意:由于题目的特殊性,这里的“体积” k = sqrt( n ),而对于状态表示无意义的dp我们用0x3f3f3f3f标识,同时,返回数据时也要特判
class Solution {
public:int numSquares(int n) {const int INF = 0x3f3f3f3f;int k = sqrt(n);vector<vector<int>> dp(k + 1, vector<int>(n + 1, INF));dp[0][0] = 0;for(int i = 1; i <= k; ++i)for(int j = 0; j <= n; ++j){dp[i][j] = dp[i - 1][j];if(j >= i * i) dp[i][j] = min(dp[i][j], dp[i][j - i * i] + 1);}return dp[k][n] == INF ? 0 : dp[k][n];}
};
这是二维ac代码
class Solution {
public:int numSquares(int n) {const int INF = 0x3f3f3f3f;int k = sqrt(n);vector<int> dp(n + 1, INF);dp[0] = 0;for(int i = 1; i <= k; ++i)for(int j = i * i; j <= n; ++j)dp[j] = min(dp[j], dp[j - i * i] + 1);return dp[n] == INF ? 0 : dp[n];}
};
这是一维ac代码
C.二维费用的背包问题
9.一和零
474. 一和零
给你一个二进制字符串数组 strs
和两个整数 m
和 n
。
请你找出并返回 strs
的最大子集的长度,该子集中 最多 有 m
个 0
和 n
个 1
。
如果 x
的所有元素也是 y
的元素,集合 x
是集合 y
的 子集
1.状态表示:用dp[ i ][ j ][ k ]表示选到第 i 个数,0 数目小于 j ,1数目小于 k 的最大字符串数
2.状态转移方程:dp[ i ][ j ][ k ] = max(dp[ i - 1 ][ j ][ k ], dp[ i - 1 ][ j - a ][ k - b ] + 1)
3.初始化:无需初始化
4.填表顺序:从上往下每一行
5.返回值:dp[ len ][ m ][ n ]
class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n) {int len = strs.size();vector<vector<vector<int>>> dp(len + 1, vector<vector<int>>(m + 1, vector<int>(n + 1)));for(int i = 1; i <= len; ++i){string s = strs[i - 1];int a = 0, b = 0;for(auto e : s)if(e == '0') ++a;else ++b;for(int j = 0; j <= m; ++j)for(int k = 0; k <= n; ++k){dp[i][j][k] = dp[i - 1][j][k];if(j >= a && k >= b)dp[i][j][k] = max(dp[i][j][k], dp[i - 1][j - a][k - b] + 1);}}return dp[len][m][n];}
};
这是二维ac代码
class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n) {int len = strs.size();vector<vector<int>> dp(m + 1, vector<int>(n + 1));for(int i = 1; i <= len; ++i){string s = strs[i - 1];int a = 0, b = 0;for(auto e : s)if(e == '0') ++a;else ++b;for(int j = m; j >= a; --j)for(int k = n; k >= b; --k)dp[j][k] = max(dp[j][k], dp[j - a][k - b] + 1);}return dp[m][n];}
};
这是一维ac代码
10.盈利计划
集团里有 n
名员工,他们可以完成各种各样的工作创造利润。
第 i
种工作会产生 profit[i]
的利润,它要求 group[i]
名成员共同参与。如果成员参与了其中一项工作,就不能参与另一项工作。
工作的任何至少产生 minProfit
利润的子集称为 盈利计划 。并且工作的成员总数最多为 n
。
有多少种计划可以选择?因为答案很大,所以 返回结果模 10^9 + 7
的值
1.状态表示:用dp[ i ][ j ][ k ]表示选到第 i 个计划,员工数目不大于 j ,利润不小于 k
2.状态转移方程:dp[ i ][ j ][ k ] = (dp[ i - 1 ][ j ][ k ] + dp[ i - 1 ][ j - g[ i - 1 ] ] [max(0, k - p[ i - 1 ] ) ] ) % a;
3.初始化:dp[ 0 ][ j ][ 0 ] = 1
4.填表顺序:从上往下每一行
5.返回值:dp[ m ][ n ][ mP ]
class Solution {
public:int profitableSchemes(int n, int mP, vector<int>& g, vector<int>& p) {const int a = 1e9 + 7;int m = g.size();vector<vector<vector<int>>> dp(m + 1, vector<vector<int>>(n + 1, vector<int>(mP + 1)));for(int j = 0; j <= n; ++j)dp[0][j][0] =1;for(int i = 1; i <= m; ++i)for(int j = 0; j <= n; ++j)for(int k = 0; k <= mP; ++k){dp[i][j][k] = dp[i - 1][j][k];if(j >= g[i - 1])dp[i][j][k] = (dp[i][j][k] + dp[i - 1][j - g[i - 1]][max(0, k - p[i - 1])]) % a;}return dp[m][n][mP];}
};
这是二维ac代码
class Solution {
public:int profitableSchemes(int n, int mP, vector<int>& g, vector<int>& p) {const int a = 1e9 + 7;int m = g.size();vector<vector<int>> dp(n + 1, vector<int>(mP + 1));for(int j = 0; j <= n; ++j)dp[j][0] =1;for(int i = 1; i <= m; ++i)for(int j = n; j >= g[i - 1]; --j)for(int k = 0; k <= mP; ++k)dp[j][k] = (dp[j][k] + dp[j - g[i - 1]][max(0, k - p[i - 1])]) % a;return dp[n][mP];}
};
这是一维ac代码
D.似包非包
11.组合总数IV
给你一个由 不同 整数组成的数组 nums
,和一个目标整数 target
。请你从 nums
中找出并返回总和为 target
的元素组合的个数。
题目数据保证答案符合 32 位整数范围
1.状态表示:用dp[ i ]表示数 i 被构造的排列次数
2.状态转移方程:dp[ i ] += dp[ i - x ];
3.初始化:dp[ 0 ] = 1
4.填表顺序:从左往右
5.返回值:dp[ target ]
class Solution {
public:int combinationSum4(vector<int>& nums, int target) {vector<double> dp(target + 1);dp[0] = 1;for(int i = 1; i <= target; ++i)for(auto x : nums)if(i >= x)dp[i] += dp[i - x];return dp[target];}
};
这是ac代码
12.不同的二叉搜索树
96. 不同的二叉搜索树
给你一个整数 n
,求恰由 n
个节点组成且节点值从 1
到 n
互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。
1.状态表示:用dp[ i ]表示 1 到 n 可以组成二叉搜索数的个数
2.状态转移方程:dp[ i ] += dp[ k - 1 ] * dp[ i - k ] ;
3.初始化:dp[ 0 ] = 1
4.填表顺序:从左往右
5.返回值:dp[ n ]
class Solution {
public:int numTrees(int n) {vector<int> dp(n + 1);dp[0] = 1;for(int i = 1; i <= n; ++i)for(int k = 1; k <= i; ++k)dp[i] += dp[k - 1] * dp[i - k];return dp[n];}
};
这是ac代码