大模型入门(二)—— PEFT

PEFT(Parameter-Efficient Fine-Tuning)是hugging face开源的一个参数高效微调大模型的工具,里面集成了4中微调大模型的方法,可以通过微调少量参数就达到接近微调全量参数的效果,使得在GPU资源不足的情况下也可以微调大模型。

1)LORA:LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

LORA是PEFT中最常用的方法,LORA认为过参数的模型权重其实存在低内在维度,那么模型适应过程中的权重变化也存在低内在维度,因此模型在微调的过程中实际上可以通过微调低秩矩阵来微调模型。LORA的微调过程如下:在Linear层增加一个“旁路”, “旁路”用A、B两个矩阵组合表示,维度分别是d × r和 r × d,其中r远小于d,A随机初始化,B初始化为0,在微调模型的过程中,左边的W不更新,只更新右边的A和B的参数。前向传播时是左右的输出和,反向传播时只更新右边,因此计算的梯度以及优化器的中间值也只和右边有关,最终右边的参数会单独保存下来。LORA这种训练方式不会改变大模型的参数,且针对每个下游任务生成自己的LORA参数,在预测阶段只要将大模型的参数和LORA参数叠加在一起即可。

LORA还提供了单独的库loralib,可以结合pytorch一起使用。

2)P-tuning:GPT Understands, Too

一般在通过Prompt的方式使用大模型时,通常需要人工构造一些模板,P-tuning将自然语言模板的构建转换成连续参数优化的问题,用一些特殊的token替代人工构造的自然语言模板,让模型自己去学习这些连续的token,在学习的过程中只微调这些token的embedding参数,并且为了保证token之间的联系,并不是随机初始化embedding,而是通过lstm层学习这些token的embedding。

3)Prefix Tuning:Optimizing Continuous Prompts for Generation

Prefix Tuning针对不同的模型结构有设计不同的模式,以自回归的模型为例,不再使用token去作为前缀,而是直接使用参数作为前缀,比如一个l × d的矩阵P作为前缀,但直接使用这样的前缀效果不稳定,因此使用一个MLP层重参数化,并放大维度d,除了在embedding层加入这个前缀之外,还在其他的所有层都添加这样一个前缀。最后微调时只调整前缀的参数,大模型的参数保持不变。保存时只需要为每个任务保存重参数的结果即可。

4)Prompt tuning:The Power of Scale for Parameter-Efficient Prompt Tuning

像GPT3中那种,通过人工构造一些token作为前缀输入到模型中,因为这些token是从vocab中选择的,因此会受到大模型的参数的影响,所以要取得好的结果的话,人工构造的提示语必须要符合模型训练语料的特性。而Prompt tuning是为Prompt单独生成一份参数,在微调的过程中大模型的参数冻结不变,只更新Prompt的参数。且文章实验表明对于Prompt的参数使用大模型的vocab中的一些token 的embedding初始化,或者使用标签词的嵌入(当标签词的token数大于1时,对所有token取平均,即将一个标签词看作一个整体)初始化要比随机初始化的效果要好。此外Prompt的长度对结果也会有影响,长度越长效果会越好,但随着模型的规模变大,不同长度或者不同初始化的Prompt之间的差距会被缩小。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/833607.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《ElementUI 基础知识》el-tree 之“我的电脑”目录结构效果

前言 项目需求,Web 端获取服务器文件夹目录结构。目录数据是调接口获取,本篇略过,直接展现数据! 效果 实现 html 代码 8 - 15 行,自定义节点信息;代码 9 - 14 行,判断 icon 显示&#xff1b…

[沫忘录]MySQL储存对象

[沫忘录]MySQL储存对象 视图 视图本质是对原表(基表)显示上的裁剪,可以当作表进行操作,其操作的结果会直接反馈到原表上,即对视图的操作实质上是对原表的操作。 MySQL不仅支持为基表创建视图,同时也支持为视图创建视图。 基本语…

Bumblebee X系列用于高精度机器人应用的新型立体视觉产品

Bumblebee X是最新的GigE驱动立体成像解决方案,为机器人引导和拾取应用带来高精度和低延迟。 近日,51camera的合作伙伴Teledyne FLIR IIS推出一款用于高精度机器人应用的新型立体视觉产品Bumblebee X系列。 Bumblebee X产品图 BumblebeeX系列&#xff…

百度云内容审核快速配置 (java)

为什么要选择百度云 ? 因为他免费用一年 首先要先开通百度云内容安全服务 按照操作指引走完整套 ContentCensor Java SDK目录结构** com.baidu.aip├── auth //签名相关类├── http //Http通…

IDEA 好用的插件

图标插件:Atom Material Icons 此插件的作用就是更好的显示各种文件的类别,使之一目了然 汉化包 Chinese ​(Simplified)​ Language Pack / 中文语言包 作用就是 汉化 AI编码助手 GitHub Copilot AI编码助手:提示代码很好用 缺点&#xff1a…

使用perf查看热点函数和系统调用最大延迟函数

1、安装perf工具 1.1、ubuntu 18.04 x86下的安装 安装sudo apt install linux-source sudo apt install linux-tools-uname -r # ubuntu 18.04虚拟机实操可行 1.2、ubuntu 18.04 ARM下的安装 参考 Nvidia Jetson系列产品安装Perf ​ARM64版本的Ubuntu上安装perf 与参考文…

windows11获取笔记本电脑电池健康报告

笔记本电脑的电池关系到我们外出时使用的安全,如果电池健康有问题需要及时更换,windows系统提供了检查电池健康度的方法。 1、打开命令行 1)键入 winR 2)键入 cmd 打开命令行。 2、在命令行运行如下指令,生成电池健…

DI-engine强化学习入门(九)环境包裹器(Env Wrapper)

在强化学习中,环境(Environment)是智能体(Agent)进行学习和互动的场所,它定义了状态空间、动作空间以及奖励机制。Env Wrapper(环境包装器)提供了一种方便的机制来增强或修改原始环境…

很好的Baidu Comate,使我的编码效率飞起!

文章目录 背景及简单介绍Baidu Comate安装功能演示总结 🎁写在前面: 观众老爷们好呀,这里是前端小刘不怕牛牛频道,今天牛牛在论坛发现了一款便捷实用的智能编程助手,就是百度推出的Baidu Comate。下面是Baidu Comate评…

MT3034 算术招亲

跟MT3033新的表达式类似&#xff0c;只多了一个括号合法性的判断 #include <bits/stdc.h> using namespace std; const int N 40; bool tag[N]; bool is_op(char c) {return c || c - || c * || c / || c ^; } int priority(char op) { // 优先级排序if (op ||…

vector、heap数组、stack数组访问性能验证

测试目的 本次测试旨在比较不同数据结构&#xff08;vector、数组&#xff09;以及不同访问方法&#xff08;[]、at()、offset&#xff09;在性能上的差异&#xff0c;从而为开发者提供在特定情境下做出最佳选择的依据。 测试代码 测试网址:Quick C Benchmarks 使用GCC9.5 …

微服务项目实战-黑马头条(十三):持续集成

文章目录 项目部署_持续集成1 今日内容介绍1.1 什么是持续集成1.2 持续集成的好处1.3 今日内容 2 软件开发模式2.1 软件开发生命周期2.2 软件开发瀑布模型2.3 软件的敏捷开发 3 Jenkins安装配置3.1 Jenkins介绍3.2 Jenkins环境搭建3.2.1 Jenkins安装配置3.2.2 Jenkins插件安装3…

中仕公考:非应届生能考军队文职吗?

军队文职考试的招生对象主要针对普通高等学校的毕业生以及社会人才&#xff0c;报考条件中并没有限制考生必须是应届毕业生。所以&#xff0c;往届毕业生也是具备报考资格的&#xff0c;只需其满足相关的申请条件即可。 报考人员可大致分为三类&#xff1a;普通高校毕业生、社…

Linux中云盘/磁盘,爆满处理方式

1&#xff1a;du和df命令查看磁盘大小不一致 以下是阿里云服务器云盘使用率 运行 du -sh / 大小为20g 我的服务器大小为40g 按道理说这个云盘使用率应该是百分之五十 而运行 df -h / 这个命令是跟这个云盘使用率差不多的。 1.1分析原因 我安装了mysql&#xff0c;nginx…

微信投票小程序源码系统 独家支持礼物投票 道具投票盈利能力超强 带完整的安装代码包以及搭建教程

微信小程序的快速发展&#xff0c;各类应用场景层出不穷&#xff0c;其中投票小程序因其广泛的适用性和互动性&#xff0c;成为了许多企业和个人推广、活动的首选工具。小编给大家分享一款微信投票小程序源码系统&#xff0c;该系统以其独特的礼物投票和道具投票功能&#xff0…

公众号流量主的收益怎么样?

公众号之前是一个私域平台&#xff0c;没有粉丝基本是没有推荐的&#xff0c;所以之前入门的门槛还是很高的&#xff0c;但是今年公众号和视频号改变了推流的机制&#xff0c;现在发的文章会进入到流量池中&#xff0c;进入到公域流量&#xff0c;所以发布的优质文章会大爆的&a…

大模型驱动的新一代 BI 平台,Sugar BI 开启智慧决策新模式

本文整理自 2024 年 4 月 16 日的 2024 百度 Create 大会上的《大模型驱动的新一代 BI 平台如何开启智慧决策》分享。 全文包括了可视化 BI 分析技术架构、智能图表推荐策略与规则设计、Sugar Bot 智能问数的技术实现流程&#xff0c;以及目前的场景应用等。 1 Sugar BI 产…

C#语言基础

一、复杂数据类型 1. 枚举 1.1 基本概念 1.1.1 枚举是什么 枚举是一个被命名的整型常量的集合&#xff0c;一般用它来表示状态、类型等等 1.1.2 申明枚举和申明枚举变量 申明枚举和申明枚举变量是两个概念 申明枚举&#xff1a;相当于是创建一个自定义的枚举类型 申明枚…

python爬虫(二) 之 42号网汽车文章爬虫

python爬虫&#xff08;二&#xff09; 之 42号网汽车文章爬虫 今天在咸鱼上有个买家找我一个42号网汽车文章的爬虫&#xff0c;目前需求已经做完了&#xff0c;现在将这部分代码开源&#xff0c;供大家参考。爬虫能够抓取到网站上所有文章的数据&#xff0c;大概一小时左右就…

一款功能强大的网络安全综合工具-PotatoTool

一、 简介 这款工具是一款功能强大的网络安全综合工具&#xff0c;旨在为安全从业者、红蓝对抗人员和网络安全爱好者提供全面的网络安全解决方案。它集成了多种实用功能&#xff0c;包括解密、分析、扫描、溯源等&#xff0c;为用户提供了便捷的操作界面和丰富的功能选择。 二…