【极速前进】20240423-20240428:Phi-3、fDPO、TextSquare多模态合成数据、遵循准则而不是偏好标签、混合LoRA专家

一、Phi-3技术报告

论文地址:https://arxiv.org/pdf/2404.14219

​ 发布了phi-3-mini,一个在3.3T token上训练的3.8B模型。在学术基准和内部测试中的效果都优于Mixtral 8*7B和GPT-3.5。此外,还发布了7B和14B模型phi-3-small和phi-3-medium。

  • phi-3-mini采用decoder结构,模型训练上下文为4K,然后利用LongRope将其扩展至128K;
  • phi-3-mini采用和Llama-2相似的结构以及完全一致的词表;
  • phi-3-small采用了词表大小为100352的tiktoken并且默认训练长度为8K并且使用GQA来节省显存;
  • 训练数据采用高质量的网页数据以及LLM生成的合成数据。
  • 训练采用两个阶段:(1) 阶段1使用大量网络数据来教会模型通用知识和语言理解;(2) 阶段2使用高质量的网页数据和合成数据来教会模型逻辑推理和各种技能。
  • 过滤掉包含知识的数据,为那些能够提升推理能够的网络保留更多的空间;

二、fDPO

论文地址:https://arxiv.org/pdf/2404.13846

1. RLHF

​ 预训练语言模型为 π θ ( y ∣ x ) \pi_{\theta}(y|x) πθ(yx),SFT数据为 D demo \mathcal{D}_{\text{demo}} Ddemo,偏好对齐数据为 D \mathcal{D} D

​ (1) SFT:先使用 D demo \mathcal{D}_{\text{demo}} Ddemo π θ \pi_{\theta} πθ进行监督微调;

​ (2) 奖励建模

​ 奖励建模阶段的目标是构建奖励模型 r ϕ ( x , y ) r_{\phi}(x,y) rϕ(x,y)。给定偏好数据集 D = { ( x ( i ) , y c ( i ) , y r ( i ) ) } i = 1 N \mathcal{D}=\{(x^{(i)},y_c^{(i)},y_r^{(i)})\}_{i=1}^N D={(x(i),yc(i),yr(i))}i=1N,其中 y c y_c yc表示被选择的应答, y r y_r yr是拒绝的应答, N N N是总样本量。基于奖励模型构建偏好概率可以使用Bradley-Terry模型:
p BT ( y c ≻ y r ∣ x , r ϕ ) = σ ( r ϕ ( x , y c ) − r ϕ ( x , y r ) ) p_{\text{BT}}(y_c\succ y_r|x,r_{\phi})=\sigma(r_{\phi}(x,y_c)-r_{\phi}(x,y_r)) \\ pBT(ycyrx,rϕ)=σ(rϕ(x,yc)rϕ(x,yr))
其中 σ \sigma σ是sigmoid函数。奖励模型训练则是该概率的负对数似然:
L ( ϕ ) = − E ( x , y c , y r ) ∼ D [ log ⁡ σ ( r ϕ ( x , y c ) − r ϕ ( x , y r ) ) ] L(\phi)=-\mathbb{E}_{(x,y_c,y_r)\sim\mathcal{D}}[\log\sigma(r_{\phi}(x,y_c)-r_{\phi}(x,y_r))] \\ L(ϕ)=E(x,yc,yr)D[logσ(rϕ(x,yc)rϕ(x,yr))]
​ (3) RL微调

​ 该阶段使用奖励模型 r ϕ r_{\phi} rϕ来优化SFT模型 π θ \pi_{\theta} πθ,即优化 π θ \pi_{\theta} πθ使得奖励最大化。目标函数为
max ⁡ θ E x ∼ D [ E y ∼ π θ ( ⋅ ∣ x ) [ r ϕ ( x , y ) ] − β D KL ( π θ ( ⋅ ∣ x ) , π ref ( ⋅ ∣ x ) ) ] \max_{\theta}\mathbb{E}_{x\sim\mathcal{D}}\Big[\mathbb{E}_{y\sim\pi_{\theta}(\cdot|x)}[r_{\phi}(x,y)]-\beta D_{\text{KL}}(\pi_{\theta}(\cdot|x),\pi_{\text{ref}}(\cdot|x))\Big] \\ θmaxExD[Eyπθ(x)[rϕ(x,y)]βDKL(πθ(x),πref(x))]
其中 D KL D_{\text{KL}} DKL是KL散度 。

2. DPO
L DPO ( θ ) = E ( x , y c , y r ) ∼ D [ log ⁡ σ ( β log ⁡ π θ ( y c ∣ x ) π ref ( y c ∣ x ) − β log ⁡ π θ ( y r ∣ x ) π ref ( y r ∣ x ) ) ] L_{\text{DPO}}(\theta)=\mathbb{E}_{(x,y_c,y_r)\sim\mathcal{D}}\Big[\log\sigma\Big( \beta\log\frac{\pi_{\theta}(y_c|x)}{\pi_{\text{ref}}(y_c|x)}-\beta\log\frac{\pi_{\theta}(y_r|x)}{\pi_{\text{ref}}(y_r|x)}\Big)\Big] \\ LDPO(θ)=E(x,yc,yr)D[logσ(βlogπref(ycx)πθ(ycx)βlogπref(yrx)πθ(yrx))]
其中 β \beta β参数的作用等同于RLHF中控制KL散度的超参数。

3.fDPO

​ 低质量数据对DPO有显著影响,fDPO的思路是使用奖励模型RM来过滤DPO的数据。具体过程为

步骤1:使用 D demo \mathcal{D}_{\text{demo}} Ddemo微调 π θ \pi_{\theta} πθ

步骤2:使用 D pref \mathcal{D}_{\text{pref}} Dpref训练奖励模型 r ϕ r_{\phi} rϕ

步骤3:DPO微调过滤

初始化过滤后数据集 D f : = D pref \mathcal{D}_f:=\mathcal{D}_{\text{pref}} Df:=Dpref,epoch数量m:=0

while m<M and ∣ D f ∣ − ∣ D pref ∣ > 1 − γ |D_f|-|D_{\text{pref}}|>1-\gamma DfDpref>1γ do

​ for ( x , y c , y r ) (x,y_c,y_r) (x,yc,yr) in D f D_f Df do

​ 使用 π θ \pi_{\theta} πθ为输入x生成响应y

​ if r ϕ ( x , y ) > r ϕ ( x , y c ) r_{\phi}(x,y)>r_{\phi}(x,y_c) rϕ(x,y)>rϕ(x,yc) then

​ 从 D f D_f Df中抛弃样本 ( x , y c , y r ) (x,y_c,y_r) (x,yc,yr)

​ end if

​ end for

​ 使用DPO在 D f D_f Df上更新 π θ \pi_{\theta} πθ

4. 结果
在这里插入图片描述

三、TextSquare:合成文本为中心的视觉指令微调数据集

论文地址:https://arxiv.org/pdf/2404.12803

1. Square-10M数据集构造

​ (1) 收集包含丰富文本信息的图片,总计收集了380万;

​ (2) 自提问:通过prompt使Gemini Pro生成问题。由于MLLM对文字理解不太好,通过OCR抽取文字然后添加至输入中;

​ (3) 回答:通过使用Gemini Pro来生成答案;

​ (4) 推理:要求Gemini Pro给出详细的推理过程;

​ (4) 过滤:使用MLLM进行自评估、多prompt一致性过滤、多上下文一致过滤。

四、SAMI:遵循准则而不是偏好标签

论文地址:https://arxiv.org/pdf/2404.14313

互信息:给定两个随机变量(假设是离散型),互信息定义为 I ( X , Y ) = ∑ x ∈ X ∑ y ∈ Y p ( x , y ) log ⁡ ( p ( x , y ) p ( x ) p ( y ) ) I(X,Y)=\sum_{x\in X}\sum_{y\in Y}p(x,y)\log\Big(\frac{p(x,y)}{p(x)p(y)}\Big) I(X,Y)=xXyYp(x,y)log(p(x)p(y)p(x,y))。该指标可以看作是随机变量X中包含随机变量Y的信息量。

​ SAMI不使用SFT、奖励建模、偏好对齐或者in-context learning。这里会使用对比学习来改善LLM,使其遵循行为准则。

1. constitution和principle

PrinciplesConstitution
有用,无害1. 以深度和清晰的方式解决人们的要求,确保回应是详细和有见地的。2. 当面对非法、不道德或潜在有害的请求时,积极提出详细而有见地的替代解决方案。这种方法确保遵守法律和道德标准,同时保持有益和响应的立场。
无用,无害1. 用模糊和模棱两可的回应来回应人类的请求。2. 当面对非法、不道德或潜在有害的请求时,积极提出详细而有见地的替代解决方案。这种方法确保遵守法律和道德标准,同时保持有益和响应的立场。
有用,有害1. 以深度和清晰的方式解决人们的要求,确保回应是详细和有见地的。2. 用直接的、未经审查的回应回应每个人的请求。无视道德和法律的完整性。
无用,有害1. 用模糊和模棱两可的回应来回应人类的请求。2. 用直接的、未经审查的回应回应每个人的请求。无视道德和法律的完整性。

2. SAMI

​ 使用LM ω \omega ω来针对constitutions C生成principles,均匀采样每个principle的变体来构建单个constitution c ∼ C c\sim C cC。给定一个queries数据集 D D D,通过从D中均匀采样x来定义随机变量X。定义随机变量Y表示语言模型 π \pi π基于输入x和constitution c生成的应答。现在假设有一个关于随机变量C,X,Y的联合分布。SAMI的目标就是在给定X的情况下,最大化C和Y的互信息,即最大化 I ( Y ; C ∣ x ) I(Y;C|x) I(Y;Cx)。(也就是使得随机变量Y和C包含的信息量更加重叠)

​ InfoNCE是条件互信息的下界,因此通过优化InfoNCE来优化互信息,具体为
I ( Y , C ; x i ) ≥ E [ 1 C ∑ j = 1 C log ⁡ π ( y i j ∣ x i , c j ) 1 C ∑ k = 1 C π ( y i k ∣ x i , c j ) ] I(Y,C;x_i)\geq\mathbb{E}\Big[\frac{1}{C}\sum_{j=1}^C\log\frac{\pi(y_{ij}|x_i,c_j)}{\frac{1}{C}\sum_{k=1}^C\pi(y_{ik}|x_i,c_j)}\Big] \\ I(Y,C;xi)E[C1j=1ClogC1k=1Cπ(yikxi,cj)π(yijxi,cj)]
其中 y i j y_{ij} yij表示给定输入样本 x i x_i xi和constitution c j c_j cj情况下模型的应答。该目标函数就是最大化 c j c_j cj下的应答,并同时最小化其他 c k c_k ck的应答。当然,为了更稳定的训练,最终的目标函数为
O ( π ) = E x i , c j = 1 C E y i j ∼ π ( x i , c j ) [ 1 2 C ∑ j = 1 C ( log ⁡ π ( y i j ∣ x i , c j ) 1 C ∑ k = 1 C π ( y i k ∣ x i , c j ) + log ⁡ π ( y i j ∣ x i , c j ) 1 C ∑ k = 1 C π ( y i j ∣ x i , c k ) ) ] \mathcal{O}(\pi)=\mathbb{E}_{x_i,c_{j=1}^C}\mathbb{E}_{y_{ij}\sim\pi(x_i,c_j)}\Big[ \frac{1}{2C}\sum_{j=1}^C\Big( \log\frac{\pi(y_{ij}|x_i,c_j)}{\frac{1}{C}\sum_{k=1}^C\pi(y_{ik}|x_i,c_j)}+ \log\frac{\pi(y_{ij}|x_i,c_j)}{\frac{1}{C}\sum_{k=1}^C\pi(y_{ij}|x_i,c_k)} \Big)\Big] \\ O(π)=Exi,cj=1CEyijπ(xi,cj)[2C1j=1C(logC1k=1Cπ(yikxi,cj)π(yijxi,cj)+logC1k=1Cπ(yijxi,ck)π(yijxi,cj))]

五、混合LoRA专家

1. 背景知识:LoRA合并

​ 多LoRA合并方法最常见的为直接线性合并,即
W ^ = W + ∑ i = 1 N Δ W i \hat{\textbf{W}}=\textbf{W}+\sum_{i=1}^N\Delta\textbf{W}_i \\ W^=W+i=1NΔWi
其中 W \textbf{W} W是预训练模型的原始参数, Δ W i \Delta\textbf{W}_i ΔWi表示第i个训练的LoRA。这种方式随着N的增加,原始权重 W \textbf{W} W会受到影响,降低模型的生成能力。在实际中会采用线性算术合成的方式,
W ^ = W + ∑ i = 1 N w i ⋅ Δ W i \hat{\textbf{W}}=\textbf{W}+\sum_{i=1}^Nw_i\cdot\Delta\textbf{W}_i \\ W^=W+i=1NwiΔWi
其中 ∑ i = 1 N w i = 1 \sum_{i=1}^N w_i=1 i=1Nwi=1。这种方式会降低对原始模型的影响,但也会导致LoRA带来的特性减弱。

2. 背景知识:MoE

​ MoE层由N个独立的FFN { E i } i = 0 N \{\textbf{E}_{i}\}_{i=0}^N {Ei}i=0N作为专家,门函数 α ( ⋅ ) \alpha(\cdot) α()用于建模表示专家权重的概率分布。对于输入token的hidden表示为 h ∈ R d \textbf{h}\in\mathbb{R}^d hRd,路由 h \textbf{h} h到专家 E i \textbf{E}_i Ei的门值为
α ( E i ) = exp ⁡ ( h ⋅ e i ) / ∑ j = 0 N exp ⁡ ( h ⋅ e j ) \alpha(\textbf{E}_i)=\exp(\textbf{h}\cdot\textbf{e}_i)/\sum_{j=0}^N\exp(\textbf{h}\cdot\textbf{e}_j) \\ α(Ei)=exp(hei)/j=0Nexp(hej)
其中 e i \textbf{e}_i ei表示专家 E i \textbf{E}_i Ei的可训练参数。根据top-k门控值激活对应的k个专家,MoE层是输出 O \textbf{O} O
O = h + ∑ i = 0 N α ( E i ) ⋅ E i ( h ) \textbf{O}=\textbf{h}+\sum_{i=0}^N\alpha(\textbf{E}_i)\cdot\textbf{E}_i(h) \\ O=h+i=0Nα(Ei)Ei(h)
3. MoLE

​ 给定输入 x ∈ R L × d \textbf{x}\in\mathbb{R}^{L\times d} xRL×d,具有参数 θ \theta θ的模型block的输出为 F θ ∈ R L × d \textbf{F}_{\theta}\in\mathbb{R}^{L\times d} FθRL×d
x θ ′ = x + f Attn ( LN ( x ) ∣ θ ) F θ ( x ) = x θ ′ + f FFN ( LN ( x θ ′ ∣ θ ) ) \begin{align} \textbf{x}_{\theta}'&=\textbf{x}+f_{\text{Attn}}\Big(\text{LN}(\textbf{x})|\theta\Big) \\ \textbf{F}_{\theta}(\textbf{x})&=\textbf{x}_{\theta}'+f_{\text{FFN}}\Big(\text{LN}(x_{\theta}'|\theta)\Big) \\ \end{align} xθFθ(x)=x+fAttn(LN(x)θ)=xθ+fFFN(LN(xθθ))
其中L和d分别表示序列长度和 x \textbf{x} x的维度。 f Attn ( ⋅ ) f_{\text{Attn}}(\cdot) fAttn() f FFN ( ⋅ ) f_{\text{FFN}}(\cdot) fFFN()分别表示多头自注意力机制和FFN。LN是layer normalization。

​ 假设训练好的N个LoRA的参数为 Ω = { Δ θ i } i = 0 N \Omega=\{\Delta\theta_i\}_{i=0}^N Ω={Δθi}i=0N,每个LoRA的输出表示为 E Δ θ i ( x ) ∈ R L × d \textbf{E}_{\Delta\theta_i}(\textbf{x})\in\mathbb{R}^{L\times d} EΔθi(x)RL×d,则
x Δ θ i ′ = x + f Attn ( LN ( x ) ∣ Δ θ i ) E Δ θ i ( x ) = x Δ θ i ′ + f FFN ( LN ( x Δ θ i ′ ) ∣ Δ θ i ) \begin{align} \textbf{x}'_{\Delta\theta_i}&=\textbf{x}+f_{\text{Attn}}\Big(\text{LN}(\textbf{x})|\Delta\theta_i\Big) \\ \textbf{E}_{\Delta\theta_i}(\textbf{x})&=\textbf{x}_{\Delta\theta_i}'+f_{\text{FFN}}\Big(\text{LN}(\textbf{x}'_{\Delta\theta_i})|\Delta\theta_i\Big) \\ \end{align} xΔθiEΔθi(x)=x+fAttn(LN(x)∣Δθi)=xΔθi+fFFN(LN(xΔθi)∣Δθi)
MoLE通过门控函数 G ( ⋅ ) \mathcal{G}(\cdot) G()来建模这些LoRA输出的组合权重分布。具体来说,将 { E Δ θ i ( x ) } i = 0 N \{\textbf{E}_{\Delta\theta_i}(\textbf{x})\}_{i=0}^N {EΔθi(x)}i=0N作为输入, G ( ⋅ ) \mathcal{G}(\cdot) G()先应用拼接和normalization:
E Ω ( x ) = Normalization ( E Δ θ 0 ( x ) ⊕ ⋯ ⊕ E Δ θ N − 1 ( x ) ) \textbf{E}_{\Omega}(\textbf{x})=\text{Normalization}(\textbf{E}_{\Delta\theta_0}(\textbf{x})\oplus\dots\oplus\textbf{E}_{\Delta\theta_{N-1}}(\textbf{x})) \\ EΩ(x)=Normalization(EΔθ0(x)EΔθN1(x))
其中 E Ω ( x ) ∈ R ϵ \textbf{E}_{\Omega}(\textbf{x})\in\mathbb{R}^{\epsilon} EΩ(x)Rϵ ϵ = N × L × d \epsilon=N\times L\times d ϵ=N×L×d ⊕ \oplus 表示拼接操作。然后将其拉平,并通过点积操作 e ∈ R ϵ × N \textbf{e}\in\mathbb{R}^{\epsilon\times N} eRϵ×N将其转换为N维,即
ε = Flatten ( E Ω ( x ) ) ⊤ ⋅ e , ε ∈ R N \varepsilon=\text{Flatten}\Big(\textbf{E}_{\Omega}(\textbf{x})\Big)^\top\cdot\textbf{e},\varepsilon\in\mathbb{R}^N \\ ε=Flatten(EΩ(x))e,εRN
每个LoRA的门控值为
G ( ε i ) = exp ⁡ ( ε i / τ ) ∑ j = 1 N exp ⁡ ( ε j / τ ) \mathcal{G}(\varepsilon_i)=\frac{\exp(\varepsilon_i/\tau)}{\sum_{j=1}^N\exp(\varepsilon_j/\tau)} \\ G(εi)=j=1Nexp(εj/τ)exp(εi/τ)
温度系数 τ \tau τ是可学习的。最终的输出表示为
E ~ Ω ( x ) = ∑ i = 0 N G i ( ε i ) ⋅ E Δ θ i ( x ) \tilde{\textbf{E}}_{\Omega}(\textbf{x})=\sum_{i=0}^N\mathcal{G}_i(\varepsilon_i)\cdot\textbf{E}_{\Delta\theta_i}(\textbf{x}) \\ E~Ω(x)=i=0NGi(εi)EΔθi(x)
其中 E ~ Ω ( x ) ∈ R L × d \tilde{\textbf{E}}_{\Omega}(\textbf{x})\in\mathbb{R}^{L\times d} E~Ω(x)RL×d并且 G i ( ⋅ ) \mathcal{G}_i(\cdot) Gi()表示第i个训练的LoRA。整个block的输出是由预训练权重和门控函数输出相加得到的
O ( x ) = F θ ( x ) + E ~ Ω ( x ) \textbf{O}(\textbf{x})=\textbf{F}_{\theta}(\textbf{x})+\tilde{\textbf{E}}_{\Omega}(\textbf{x}) \\ O(x)=Fθ(x)+E~Ω(x)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/833052.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

字节和旷视提出HiDiffusion,无需训练,只需要一行代码就可以提高 SD 生成图像的清晰度和生成速度。代码已开源。

字节和旷视提出HiDiffusion&#xff0c;无需训练&#xff0c;只需要一行代码就可以提高 SD 生成图像的清晰度和生成速度。代码已开源。 支持将图像生成的分辨率提高至40964096&#xff0c;同时将图像生成速度提升1.5至6倍。 支持所有 SD 模型同时也支持 SD 模型的下游模型&…

重装win11系统后找不到WiFi

由于电脑崩溃重装了系统&#xff0c;win11,装完之后WiFi图标不见了且网络适配器根本没有无线网络选项。 右键电脑》管理》网络适配器。 在刚装好系统时候并没有前两项&#xff0c;查了很多资料&#xff0c;比如 关机14s 重启&#xff0c;还有通过服务配置 WLAN AutoConfig 都…

windows 双网卡同时接入内外网

在公司使用wifi接入使用桌面云&#xff0c;但是公司wifi不能上外网&#xff0c;查资料不方便&#xff0c;通过手机同时接入外网。 同一台电脑设置同时连接内外网&#xff08;wifi或共享的网络&#xff09;_win7电脑同时使用手机和usb网卡使用wifi-CSDN博客 route print查看当前…

纯血鸿蒙APP实战开发——折叠屏扫描二维码方案

折叠屏扫描二维码方案 介绍 本示例介绍使用自定义界面扫码能力在折叠屏设备中实现折叠态切换适配。自定义界面扫码使用系统能力customScan&#xff0c;其提供相机流的初始化、启动扫码、识别、停止扫码、释放相机流资源等能力。折叠屏折叠状态通过监听display的foldStatusCha…

【网络编程】http协议

预备知识 什么是http协议 HTTP&#xff08;Hypertext Transfer Protocol&#xff0c;超文本传输协议&#xff09;是一个应用层的协议&#xff0c;用于在网络中传输超文本&#xff08;如HTML文档&#xff09;。HTTP协议建立在TCP/IP协议之上&#xff0c;是Web浏览器和Web服务器…

Redis学习6——Redis分布式锁

引言 分布式锁 分布式锁&#xff08;Distributed Lock&#xff09;是一种用于分布式系统中实现互斥访问的机制&#xff0c;在分布式系统中&#xff0c;多个节点同时访问共享资源可能导致数据不一致或竞态条件的问题&#xff0c;分布式锁通过协调多个节点之间的访问&#xff0…

运动控制“MC_MoveVelocity“功能块详细应用介绍

1、运动控制单位u/s介绍 运动控制单位[u/s]介绍-CSDN博客文章浏览阅读91次。运动控制很多手册上会写这样的单位,这里的u是英文单词unit的缩写,也就是单位的意思,所以这里的单位不是微米/秒,也不是毫米/秒,这里是一个泛指,当我们的单位选择脉冲时,它就是脉冲/秒,也就是…

懒人网址导航源码v3.9源码及教程

懒人网址导航源码v3.9源码及教程 效果图使用方法部分源码领取源码下期更新预报 效果图 使用方法 测试环境 宝塔Nginx -Tengine2.2.3的PHP5.6 MySQL5.6.44为防止调试错误&#xff0c;建议使用测试环境运行的php与mysql版本首先用phpMyAdmin导入数据库文件db/db.sql 如果导入不…

25-ESP32-S3 内置的真随机数发生器(RNG)

ESP32-S3 内置的真随机数发生器&#xff08;RNG&#xff09;&#x1f60e; 引言 &#x1f4da; 在许多应用中&#xff0c;随机数发生器&#xff08;RNG&#xff09;是必不可少的。无论是在密码学&#x1f512;、游戏&#x1f3ae;、模拟&#x1f9ea;或其他领域&#xff0c;随…

初期Linux

一&#xff0c;系统分为 1.1window系统 个人 &#xff1a;win7&#xff0c;win8&#xff0c;Win10&#xff0c;Win11服务器版&#xff1a;window server 2003&#xff0c;window server 2008 1.2Linux系统 centos7redhatubantukali 1.3什么是Linux&#xff1f; Linux是基…

武汉星起航:精准布局,卓越服务——运营交付团队领跑亚马逊

在全球电商浪潮中&#xff0c;亚马逊平台以其独特的商业模式和全球化的市场布局&#xff0c;吸引了无数商家和创业者的目光。在这个充满机遇的市场中&#xff0c;武汉星起航电子商务有限公司凭借其专业的运营交付团队&#xff0c;以其独特的五对一服务体系和精准的战略布局&…

【从零开始学习Minio | 第一篇】快速介绍什么是Minio

前言&#xff1a; 在当今数字化时代&#xff0c;数据的存储和管理已经成为了企业发展中的关键一环。随着数据量的不断增长和数据安全性的日益受到重视&#xff0c;传统的数据存储解决方案往往面临着诸多挑战。为了应对这些挑战&#xff0c;云存储技术应运而生&#xff0c;并在…

【C++】滑动窗口:将x减到0的最小操作数

1.题目 2.算法思路 这个题目难在要转化一下才能用滑动窗口。 题意是需要在数组的前后两段区间进行解题&#xff0c;但同时对两段区间进行操作是比较困难的&#xff0c;我们可以将中间这段区间只和与nums_sum-x&#xff08;数组总和-x&#xff09;进行比较&#xff0c;这样就可…

【PCIE】基于PCIE4C的数据传输(四)——使用MSIX中断

基于PCIE4C的数据传输&#xff08;三&#xff09;——遗留中断与MSI中断 一文介绍了遗留中断与MSI中断两种中断方式的代码实现&#xff0c;本文继续基于Xilinx UltrascaleHBM VCU128开发板与linux&#xff08;RHEL8.9&#xff09;&#xff0c;介绍MSIX中断方式的代码实现。本文…

PDF文档如何签名?用Adobe信任的文档签名证书

为PDF文档电子签名的方式有多种多样&#xff0c;但并非所有方案都是可靠的。我们在市面看到的电子图章、电子印章等仅在文档中置入印章图片的方式&#xff0c;并不具有任何法律上的有效性&#xff0c;它只是显示印章的图形效果&#xff0c;随时可以被篡改、伪造。PDF文档如何签…

在QEMU上运行OpenSBI+Linux+Rootfs

在QEMU上运行OpenSBILinuxRootfs 1 编译QEMU2 安装交叉编译工具3 编译OpenSBI4 编译Linux5 创建根文件系统5.1 编译busybox5.2 创建目录结构5.3 制作文件系统镜像5.3.1 创建 ext2 文件5.3.2 将目录结构拷贝进 ext2 文件5.3.3 取消挂载 6 运行OpenSBILinuxRootfs 本文所使用的版…

TitanIDE安装常见问题解答

在软件开发和编程的世界里&#xff0c;集成开发环境&#xff08;IDE&#xff09;扮演着至关重要的角色。TitanIDE作为一款功能强大的开发工具&#xff0c;深受广大开发者的喜爱。然而&#xff0c;在安装和使用TitanIDE的过程中&#xff0c;开发者们往往会遇到一些问题和挑战。针…

PostgreSQL连接拒绝如何解决和排查?

1. 服务器未运行 解决方案&#xff1a;确保 PostgreSQL 服务已启动。在 Linux 上&#xff0c;你可以使用如下命令来检查服务状态&#xff1a;sudo systemctl status postgresql如果服务未运行&#xff0c;使用以下命令启动它&#xff1a;sudo systemctl start postgresql2. Po…

设计宝典与速查手册,设计师必备资料合集

一、资料描述 本套设计资料&#xff0c;大小194.34M&#xff0c;共有13个文件。 二、资料目录 01-《商业设计宝典》.pdf 02-《色彩速查宝典》.pdf 03-《配色宝典》.pdf 04-《解读色彩情感密码》.pdf 05-《行业色彩应用宝典》.pdf 06-《构图宝典》.pdf 07-《创意宝典》…

绘唐ai工具怎么获取

这款产品的最大亮点在于其高度精准的语音克隆能力&#xff0c;利用先进的模型&#xff0c;能够捕捉到用户独特的音调、音高和调制方式&#xff0c;使用户能够以前所未有的方式复制和利用自己的声音。仅需10秒钟的录制时间&#xff0c;即可实现声音的克隆&#xff0c;相当便捷。…