[含1-4问完整代码]2024深圳杯数模D题成品论文42页word版

基于有限元分析的音板振动模态分析与参数识别

                      2024深圳杯D题42页成品论文+1-4小问完整代码+高清结果图icon-default.png?t=N7T8https://www.jdmm.cc/file/2710609

 要

本文针对音板振动建模与参数识别的一系列问题,采用了多种数学建模方法和求解算法,对相关问题进行了深入分析和求解。问题1的 Kirchhoff-Love 均质薄板振动模型:我们首先建立了基于Kirchhoff-Love薄板理论的均质薄板振动模型,该模型采用了垂直于中面的直线保持直线、厚度保持不变、法向应力可忽略不计等假设。在此基础上,我们得到了描述薄板自由振动的偏微分方程组。对于具有自由边界条件的方形薄板,我们还建立了相应的边界条件方程。为了求解该振动模型,我们采用了Ritz方法。

问题2的非均质薄板振动模型: 针对问题2,我们在Kirchhoff-Love理论的基础上,进一步建立了考虑几何非均匀性的非均质薄板振动模型。该模型引入了位置相关的材料参数(密度、弹性模量、泊松比)和几何参数(厚度、弯曲角),以更准确地描述薄板的振动行为。为了求解非均质薄板振动模型,我们提出了基于分片多项式插值的算法。具体来说,我们将整个平面区域划分为若干单元,在每个单元内采用多项式函数对厚度和弯曲角分布进行拟合。最后采用Ritz法或Galerkin法求解。

问题3的分离变量法振动模型:针对问题3给出的非均质音板振动信息,我们建立了基于分离变量法的振动模型。该模型将音板的振动位移表示为时间函数和空间振型函数的乘积形式,大大简化了问题的复杂性。为了描述附件提供的5个振型函数$\varphi_j(x,y)$,我们采用了傅里叶级数展开的方法。

问题4的参数识别模型:针对问题4,我们建立了基于非均质音板振动理论的参数识别模型。该模型将密度、杨氏模量、泊松比和厚度等位置相关参数作为待识别对象,目标是确定满足给定振型信息的参数分布。

通过合理选择和扩展这些模型,我们不仅能够有效地求解音板振动问题,还可以深入理解影响振动行为的关键因素,为实际音乐乐器的设计和制造提供重要参考。

关键词:Kirchhoff-Love理论 振动模型;Ritz 法求解算法; 频率; 音板

目录

一、 问题重述

1.1 问题一的分析

1.2 问题二的分析

1.3 问题三的分析

二、 模型假设

三、 符号说明

四、 模型的建立与求解

4.1 问题一模型的建立与求解

4.2 问题二模型的建立与求解

4.3 问题三模型的建立与求解

4.4 问题四模型的建立与求解

五、 模型的分析与检验

六、 模型的评价、改进与推广

6.1 模型的优点

6.2 模型的缺点

6.3 模型的改进

6.4 模型的推广

七、 参考文献

  • 问题重述

音乐是通过乐器演奏产生的,而乐器的制造依赖于精密的工艺和数理逻辑。中国在20世纪末已经发展出成熟的乐器制造业,能够生产各种类型的乐器。弦乐器的音质很大程度上取决于其音板的性能,音板能够放大由琴弦振动产生的声音,并产生丰富的谐波。

在研究乐器音板的振动特性时,需要考虑音板的几何结构、材料特性(如密度、杨氏模量等)以及边界条件。音板的振动模态可以通过解决弹性算子(偏微分算子)的特征值问题来获得,其中频率是特征值的虚部,振型则对应于特征向量。

对于问题1,我们需要为具有自由边界条件的方形均质音板建立振动的数学模型,并计算不同材质(云杉木材、某类型常用金属、某类型高新复合材料、新型材料)下,在2000赫兹频率范围内的振动模态频率和振型,并进行比较。

问题2要求我们选择一种特定的云杉木材,制作一块具有非均匀厚度和一定弯曲度的自由边界条件的薄音板,并建立相应的振动数学模型。然后,计算这块音板在2000赫兹频率范围内的振动模态频率和振型。这需要对木材的物理特性进行详细分析,并应用适当的数学和物理原理来预测其振动行为。

对于问题3,通过观察分析某种具有自由边界条件非均质音板的5个模态情况,包括从小到大排列的5个振动频率和对应的振型图。动态曲面函数在这些振动频率上的单位范数分解,即

其中频率从小到大排列,理论上有无限多个,函数

是对应的振型,它的平方在参考平面区域的积分等于1。需要我们根据附件给出的5个频率对应的振型图描述振型函数

% 导入几何模型
model = createpde;% 读取 STL 文件并导入到几何模型中
importGeometry(model, 'violin_model.stl');% 定义边界条件和加载条件(示例)
applyBoundaryCondition(model, 'dirichlet', 'Face', 1, 'u', 0); % 设置 Dirichlet 边界条件
applyForce(model, 'Face', 2, 'g', [0; 0; -1]); % 设置加载条件% 设置材料属性
structuralProperties(model, 'YoungsModulus', 1e9, 'PoissonsRatio', 0.3, 'Density', 375);% 创建网格
generateMesh(model);% 求解有限元方程
results = solvepde(model);% 绘制结果
figure;
pdeplot3D(model, 'ColorMapData', results.NodalSolution);
title('Displacement');

问题4要求我们对附件给出的振型图轮廓形状的自由振动非均质音板,确定它的物理和厚度参数(可能随平面位置变化),使得它的前5个模态最接近附件

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/832269.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

unity滑动地图上气泡随之移动旋转

前言 最近在做世界地图,需要实现一个气泡提示的功能。大概描述:地图上可上下左右滑动,地图上有若干个资源点,玩家最多可开采1个资源点 当玩家有正在开采的资源点时,需要在资源点上方显示带有方向的气泡提示,当资源点滑动到 显示屏幕外时,气泡需要在可视屏幕边缘,且指向…

节能洗车房车牌识别项目实战

项目背景 学电子信息的你加入了一家节能环保企业,公司的主营产品是节能型洗车房。由于节水节电而且可自动洗车,产品迅速得到了市场和资本的认可。公司决定继续投入研发新一代产品:在节能洗车房的基础上实现无人值守的功能。新产品需要通过图…

vue3—项目创建

背景 初次学习vue3,需要从项目创建开始。 步骤 打开cmd命令行,进入项目存放目录下,执行创建命令: npm create vuelatest 这一指令将会安装并执行 create-vue,它是 Vue 官方的项目脚手架工具。你将会看到一些诸如 …

IDEA远程连接Docker服务

1.确保你的服务器已经安装docker docker安装步骤可查看:CentOS 9 (stream) 安装 Docker 2.安装完docker后开启远程连接 默认配置下,Docker daemon只能响应来自本地Host的客户端请求。如果要允许远程客户端请求,需要在配置文件中打开TCP监听…

vue2 webpack-dev-server Unknown promise rejection reason

在vue.config.js中添加如下配置,重启项目即可 module.exports defineConfig({devServer: {client: {overlay: false,},} })参考

手拉手springboot整合kafka

前期准备安装kafka 启动Kafka本地环境需Java 8以上 Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。 Kafka启动方式有Zookeeper和Kraft,两种方式只能选择其中一种启动,不能同时使用。 Kafka下载…

PHP定时任务框架taskPHP3.0学习记录7宝塔面板手动可以执行自动无法执行问题排查及解决方案(sh脚本、删除超过特定天数的日志文件、kill -9)

PHP定时任务框架taskPHP3.0学习记录 PHP定时任务框架taskPHP3.0学习记录1(TaskPHP、执行任务类的实操代码实例)PHP定时任务框架taskPHP3.0学习记录2(环境要求、配置Redis、crontab执行时间语法、命令操作以及Screen全屏窗口管理器&#xff0…

深入剖析Tomcat(六) Tomcat各组件的生命周期控制

Catalina中有很多组件,像上一章提到的四种容器,载入器,映射器等都是一种组件。每个组件在对外提供服务之前都需要有个启动过程;组件在销毁之前,也需要有个关闭过程;例如servlet容器关闭时,需要调…

字符串循环左移

#include <iostream> #include <string> using namespace std;int main() {string s1, s2;getline(cin, s1);int n;cin >> n;if(n>s1.size()){nn-s1.size();s2 s1.substr(0, n);s1.erase(0, n);cout << s1s2;}else{// 提取s1的前n个字符到s2中s2 …

MyBatis 多表映射及动态语句

三、MyBatis多表映射 3.1 多表映射概念 多表查询结果映射思路 前面说明中&#xff0c;我全面梳理了单表的mybatis操作&#xff01;但是开发中更多的是多表查询需求&#xff0c;这种情况我们如何让进行处理&#xff1f;MyBatis 思想是&#xff1a;数据库不可能永远是你所想或…

金融行业专题|信托超融合架构转型与场景探索合集

文章包含 15 信托用户基于超融合实现私有云建设、平台云下迁、信创云转型、容器云探索等场景实践分享。下载《【核心业务篇】金融核心生产业务场景探索文章合集》、《【信创转型与架构升级篇】金融核心生产业务场景探索文章合集》、《【数据库与数据仓库篇】金融核心生产业务场…

编程入门(六)【Linux系统基础操作一】

读者大大们好呀&#xff01;&#xff01;!☀️☀️☀️ &#x1f525; 欢迎来到我的博客 &#x1f440;期待大大的关注哦❗️❗️❗️ &#x1f680;欢迎收看我的主页文章➡️寻至善的主页 文章目录 &#x1f525;前言&#x1f680;Linux操作系统介绍与环境准备Linux操作系统介…

Windows远程桌面实现之十四:实现AirPlay接收端,让苹果设备(iOS,iPad等)屏幕镜像到PC端

by fanxiushu 2024-05-04 转载或引用请注明原始作者。 这个课题已经持续了好几年&#xff0c;已经可以说是很长时间了。 实现的程序是 xdisp_virt&#xff0c; 可以去github下载使用:GitHub - fanxiushu/xdisp_virt: xfsredir file system 一开始是基于测试镜像驱动的目的随便开…

Vue前端环境准备

vue-cli Vue-cli是Vue官方提供的脚手架&#xff0c;用于快速生成一个Vue项目模板 提供功能&#xff1a; 统一的目录结构 本地调试 热部署 单元测试 集成打包上线 依赖环境&#xff1a;NodeJs 安装NodeJs与Vue-Cli 1、安装nodejs&#xff08;已经安装就不用了&#xff09; node-…

linux文本三剑客之grep

目录 1、三剑客特点和应用场景 2、三件客之grep 1) -v 参数使用示例&#xff1a; 1、三剑客特点和应用场景 命令特点场景grep过滤grep命令过滤速度最快sed替换&#xff0c;修改文件内容&#xff0c;取行 如果要进替换/修改文件内容 取出某个范围的内容&#xff08;从中午12.到…

【stomp 实战】spring websocket用户消息发送源码分析

这一节&#xff0c;我们学习用户消息是如何发送的。 消息的分类 spring websocket将消息分为两种&#xff0c;一种是给指定的用户发送&#xff08;用户消息&#xff09;&#xff0c;一种是广播消息&#xff0c;即给所有用户发送消息。那怎么区分这两种消息呢?那就是用前缀了…

我们说的数据分析,到底要分析些什么?

作者 Gam 本文为CDA志愿者投稿作品 “我们说数据分析&#xff0c;到底要分析些什么&#xff1f;” 数据分析这个话题自从进入人们的视线以来&#xff0c;这个话题就成为人们茶余饭后的谈资&#xff0c;但是一千个人眼中就有一千个哈姆雷特&#xff0c;就意味着每个人对数据分…

使用Photoshop压缩图片大小的4种方法

使用Photoshop压缩图片大小&#xff0c;一般可采用下面4种方法&#xff1a; 1.调整图片分辨率&#xff1a; 打开需要压缩的图片文件。 依次点击菜单栏中的“图像”>“图像大小”。 在弹出的对话框中&#xff0c;通过调整分辨率参数来减小文件大小。 2.降低图片品质&#…

什么是水经微图注册码?

水经微图&#xff08;以下简称“微图”&#xff09;注册码&#xff0c;是微图的一种授权方式。 什么是微图注册码&#xff1f; 注册码仅可授权一台电脑&#xff0c;绑定CPU和网卡&#xff0c;激活后不可更换电脑使用。 如果CPU或网卡被更换&#xff0c;以及电脑损坏无法开机…