代码随想录算法训练营DAY48|C++动态规划Part9|121.买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III

文章目录

  • 121.买卖股票的最佳时机
    • 思路
    • CPP代码
  • 122.买卖股票的最佳时机II
    • 思路
    • CPP代码
  • 123.买卖股票的最佳时机III
    • 思路
    • CPP代码

121.买卖股票的最佳时机

力扣题目链接

文章讲解:121.买卖股票的最佳时机

视频讲解:动态规划之 LeetCode:121.买卖股票的最佳时机1

状态:非常与众不同的动态规划题,也是一类典型的动态规划题。

思路

  • dp数组的含义

dp[i][0]表示第i天持有这支股票能获得的最大现金,dp[i][1]表示第i天不持有这支股票能获得的最大现金。

最终要求的结果就是最后一天的状态:max(dp[len-1][0], dp[len-1][i])

并且应该注意的是,我们这里是第i天持有这支股票,并不代表我在第i天才买,我有可能之前就买了;同理,我们第i天不持有这支股票并不代表我第i天才卖。并且我们在最后拿结果的时候,肯定是dp[len(prices)][1],因为无论怎么着,我们不持有这支股票获利肯定都比在最后一天还持有股票来的高

  • 递推公式

    • 先讨论一下dp[i][0]

      • 首先确定do[i][0]表示第i天持有这支股票,那么dp[i-1][0]呢?其实他们两个是相等的, 因为我们前后两天都是持有股票;

        再一个,我们我们是在第i天才买入这支股票的话,那么也就是说我在i-1天是不持有这支股票的,并且在第i天花了买股票的钱所以直接dp[i][0]直接就是-price[i]

        综上所述:dp[i][0]=max(dp[i-1][0], -prices[i])

    • 再就是dp[i][1]

      • 同理,我们的前一天也可以是不持有这支股票的状态dp[i-1][1],此时的话和dp[i][1]他们两个相等
      • 那么如果,我们在第i天把这支股票给卖了变成了dp[i][1],那么此时我们现在手里的钱就是前一天持有股票的最大金额再加上今天卖股票赚的钱dp[i-1][0]+prices[i]
      • 综上所述:dp[i][1]=max(dp[i-1][1], dp[i-1][0]+prices[i])
  • dp数组的初始化

从公式可以看出来,我们的dp[0][0]dp[0][1]是我们整个递推公式的基础,那么dp[0][0]=-prices[0]dp[0][1]=0;然后其他的均初始化为多少其实都无所谓。

  • 遍历顺序

没讲究,直接从前向后遍历

  • 举例推导dp数组

以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:

20210224225642465

CPP代码

我们从递推公式可以看出:

dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

dp[i]只与dp[i-1]的状态有关,所以完全可以用滚动数组,也就是只需要记录 当前天的dp状态和前一天的dp状态就可以了

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);}return dp[(len - 1) % 2][1];}
};

122.买卖股票的最佳时机II

力扣题目链接

文章链接:122.买卖股票的最佳时机II

视频链接:动态规划,股票问题第二弹 | LeetCode:122.买卖股票的最佳时机II

状态:可以实现多次买卖,这个时候最主要的不同体现在递推公式上。如果会121.买卖股票的最佳时机,本题就比较简单

思路

本题唯一的区别就是本题的股票可以买卖多次(只有一只股票,所以再次购买前要出售掉之前的股票)

所以本题和121.买卖股票的最佳时机唯一的区别就在于递推公式,其他的地方都是一样的。首先,我们重申一下dp数组的含义:dp[i][0] 表示第i天持有股票所得现金;dp[i][1] 表示第i天不持有股票所得最多现金

  • 递推公式

在121.买卖股票的最佳时机中,由于股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]

本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润


接下来开始讨论核心代码:

那么如果第i天持有股票,如果是在第i天买入的,那么所得现金就是昨天不持有股票的现金再减去今天股票的价格,所以dp[i - 1][1] - prices[i]

如果第i天不持有股票即dp[i][1]

  1. i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  2. i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

综上所述:递推公式为

            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);

CPP代码

这里仅给出滚动数组版本的代码( 只记录当前天的dp状态和前一天的dp状态

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);}return dp[(len - 1) % 2][1];}
};

123.买卖股票的最佳时机III

力扣题目链接

文章链接:123.买卖股票的最佳时机III

视频链接:动态规划,股票至多买卖两次,怎么求? | LeetCode:123.买卖股票最佳时机III

状态:看到困难吓我一跳

本题有又变套路了,题目中谈到,至多买卖两次,这就意味着可以买卖一次、可以买卖两次、也可以不买卖。

但其实最本质的无非就是要设置的状态多多了,之前我们也就两个状态,持有和不持有

思路

  • 确定dp数组以及下标的含义

现在,我们状态比之前多多了:

  1. 没有操作 (其实我们也可以不设置这个状态)
  2. 第一次持有股票
  3. 第一次不持有股票
  4. 第二次持有股票
  5. 第二次不持有股票

dp[i][j]i表示第i天,j[0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

  • 确定递推公式
  1. 我们确定dp[i][1]的状态
    在这里插入图片描述

我们应该从两种情况里选择最大的,即dp[i][1]=max(dp[i-1][0]=prices[i], dp[i-1][1])

  1. 确定dp[i][2]的状态

在这里插入图片描述

同理dp[i][2]=max(dp[i-1][1] + prices[i], do[i-1][2])

3.确定dp[i][3]的状态

在这里插入图片描述

同理dp[i][3]=max(dp[i-1][2] + prices[i], do[i-1][3])

  1. 确定dp[i][4]的状态

在这里插入图片描述

同理dp[i][4]=max(dp[i-1][3] + prices[i], do[i-1][4])

  • dp数组的初始化

首先,我们只用初始化第0天,因为从此之后的n天都是由前一天初始化来的。

然后,dp[0][0]显然是等于0的,

每次的买入操作应当初始化为-prices[0],因为买入我们本次的钱肯定就是负数了,至于第二次买入可以理解为我们第零天先买入,再卖出,然后再买入

卖出操作应该初始化为0,因为就算再同一天买入卖出收获的钱肯定是0

vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
  • 确定遍历顺序

跟之前的一样,从左到右即可

  • 举例推导dp数组

以输入[1,2,3,4,5]为例

20201228181724295-20230310134201291

我们最终的最大利润肯定是出现在最后一天的第二次dp[4][4]

CPP代码

class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = dp[i - 1][0];dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.size() - 1][4];}
};//空间优化(滚动数组)
class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<int> dp(5, 0);dp[1] = -prices[0];dp[3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[1] = max(dp[1], dp[0] - prices[i]);dp[2] = max(dp[2], dp[1] + prices[i]);dp[3] = max(dp[3], dp[2] - prices[i]);dp[4] = max(dp[4], dp[3] + prices[i]);}return dp[4];}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/831183.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android 音视频基础知识

本系列文章会介绍两个 Android NDK Demo&#xff0c;拉流端会实现一个基于 FFmpeg 的视频播放器 Demo&#xff0c;推流端会实现一个视频直播 Demo&#xff0c;当然在做 Demo 之前会介绍音视频的基础知识。以下是本系列文章的目录&#xff1a; Android 音视频基础知识 Android 音…

抢先体验:MacOS成功安装PHP8.4教程

根据官方消息&#xff0c;PHP 8.4将于2024年11月21日发布。它将通过三个 alpha 版本、三个 beta 版本和六个候选版本进行测试。 这次的重大更新将为PHP带来许多优化和强大的功能。我们很高兴能够引导您完成最有趣的更新升级&#xff0c;这些更改将使我们能够编写更好的代码并构…

Mac brew安装Redis之后更新配置文件的方法

安装命令 brew install redis 查看安装位置命令 brew list redis #查看redis安装的位置 % brew list redis /usr/local/Cellar/redis/6.2.5/.bottle/etc/ (2 files) /usr/local/Cellar/redis/6.2.5/bin/redis-benchmark /usr/local/Cellar/redis/6.2.5/bin/redis-check-ao…

WebAssembly学习记录

1.WebAssembly 1.1 指令集 概念&#xff1a;二进制编码集合。 依据计算机组成原理和计算机概论&#xff0c;指令集是一组二进制编码。 作用&#xff1a;控制硬件。 这些二进制指令直接作用于硬件电路&#xff0c;控制硬件完成指定操作。 例如&#xff1a;控制数据进入某个寄存…

【unocss】自用

unocss中文官网1 不知道简写的可以在这里查 第一步 npm install -D unocss第二步 // vite.config.ts import UnoCSS from unocss/vite import { defineConfig } from viteexport default defineConfig({plugins: [UnoCSS()] })// main.ts import virtual:uno.css第三步 在…

基于Springboot的在线博客网站

基于SpringbootVue的在线博客网站的设计与实现 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringbootMybatis工具&#xff1a;IDEA、Maven、Navicat 系统展示 用户登录 首页 博客标签 博客分类 博客列表 图库相册 后台登录 后台首页 用户管理 博客标…

Android 设置头像 - 裁剪及圆形头像

书接上文 Android 设置头像 - 相册拍照&#xff0c;通过相册和照片的设置就可以获取到需要的头像信息&#xff0c;但是在通常情况下&#xff0c;我们还想要实现针对头像的裁剪功能和圆形头像功能。 先上截图&#xff1a; 图像裁剪 通常裁剪可以分为程序自动裁剪和用户选择裁剪…

基于SpringBoot实现各省距离Excel导出实战

目录 前言 一、列表及图表信息展示 1、数据过滤调整 2、信息列表及图表展示 3、Excel写入 二、界面可视化 1、Echarts图表和列表展示 2、城市详情和下载功能设计 三、成果展示 1、图表展示 2、部分城市数据分析 总结 前言 今天是五一黄金周假期第二天&#xff0c;不知…

电脑自带dll修复在哪里,使用dll修复工具解决dll问题

在我们日常与电脑相伴的工作与学习过程中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中最常见的就是“无法找到.dll”或“找不到.dll文件”。这种情况通常是由于dll文件丢失或损坏导致的。dll文件是动态链接库文件&#xff0c;它包含了许多程序运行所需的函数和资源…

使用 BurpSuite 基于 Token 机制实施暴力破解

前言 Token是一种用于身份验证和授权的令牌&#xff0c;通常由服务器生成并发送给客户端&#xff0c;客户端在后续的请求中携带该令牌来进行身份验证和授权操作。Token的使用可以增强应用程序的安全性&#xff0c;避免了直接传递敏感凭证&#xff08;如用户名和密码&#xff0…

Golang | Leetcode Golang题解之第61题旋转链表

题目&#xff1a; 题解&#xff1a; func rotateRight(head *ListNode, k int) *ListNode {if k 0 || head nil || head.Next nil {return head}n : 1iter : headfor iter.Next ! nil {iter iter.Nextn}add : n - k%nif add n {return head}iter.Next headfor add > …

golang判断通道chan是否关闭的2种方式

chan通道在go语言的办法编程中使用频繁&#xff0c;我们可以通过以下2种方式来判断channel通道是否已经关闭&#xff0c;1是使用 for range循环&#xff0c;另外是通过 for循环中if 简短语句的 逗号 ok 模式来判断。 示例代码如下&#xff1a; //方式1 通过for range形式判断…

进销存单机版和excel进销存那个好用

进销存单机版和EXCEL进销存哪个好用&#xff1f;单机版是安装在单台电脑上使用的&#xff0c;它不能像网络版一样可以多台电脑同时共享数据&#xff0c;所以进销存单机版有一个优势就是不需要连接网络也可以使用。 进销存单机版 进销存软件单机版是经过开发人员设计好的一种信…

es环境安装及php对接使用

Elasticsearch Elasticsearch 是一个分布式、高扩展、高实时的搜索与数据分析引擎。它提供了一个分布式多用户能力的全文搜索引擎&#xff0c;基于RESTful web接口。Elasticsearch是用Java语言开发的&#xff0c;并作为Apache许可条款下的开放源码发布&#xff0c;是一种流行的…

postman一直转圈圈,无法启动

解决 地址栏输入%appdata%进入此目录&#xff0c;删除%appdata%目录下的postman文件可以解决问题。

贪心算法 Greedy Algorithm

1) 贪心例子 称之为贪心算法或贪婪算法&#xff0c;核心思想是 将寻找最优解的问题分为若干个步骤 每一步骤都采用贪心原则&#xff0c;选取当前最优解 因为没有考虑所有可能&#xff0c;局部最优的堆叠不一定让最终解最优 v2已经不会更新v3因为v3更新过了 贪心算法是一种在…

Ps 滤镜:智能锐化

Ps菜单&#xff1a;滤镜/锐化/智能锐化 Filter/Sharpen/Smart Sharpen 智能锐化 Smart Sharpen滤镜可以用来提高图像的视觉清晰度和边缘细节&#xff0c;同时最大限度地减少常见的锐化问题如噪点和光晕等。 “智能锐化”滤镜通过自适应算法分析图像内容&#xff0c;针对不同的细…

省级财政收入、支出、第一、二、三产业增加值、工业增加值、金融业增加值占GDP比重数据(1978-2022年)

01、数据介绍 财政收支作为国家治理的基础&#xff0c;越来越受到社会各界的关注。同时&#xff0c;产业结构的优化与升级也是中国经济持续增长的关键因素。本数据对中国省级财政收入、支出占GDP的比重以及第一、二、三产业的增加值占GDP的比重和工业增加值占GDP的比重、金融业…

Pandas入门篇(二)-------Dataframe篇5(进阶)(Dataframe的时间序列Dataframe最终篇!!)(机器学习前置技术栈)

目录 概述一、pandas的日期类型&#xff08;一&#xff09;datetime64类型的特点&#xff08;二&#xff09; 时间序列的创建1.从字符串创建datetime64类型2. 整数&#xff08;Unix时间戳&#xff09;创建datetime64类型3.导入数据时直接转换 &#xff08;三&#xff09;dateti…

打印机-STM32版本 硬件部分

最终PCB EDA工程: 一、确定芯片型号 根据项目需求&#xff0c;梳理需要用到的功能&#xff0c; 电量检测&#xff1a;ADC 按键&#xff1a;IO input外部中断 LED&#xff1a;IO output 温度检测&#xff1a;ADC 电机控制&#xff1a;IO output 打印通讯&#xff1a;SPI …