Jammy@Jetson Orin Nano - Tensorflow GPU版本安装

Jammy@Jetson Orin Nano - Tensorflow GPU版本安装

  • 1. 源由
  • 2. 问题
  • 3. 分析
    • 3.1 当前版本Tensorflow 2.16.1
    • 3.2 GPU版本二进制安装
    • 3.3 GPU版本源代码安装
      • 3.3.1 问题1 ERROR: no such target '//tensorflow/tools/pip_package:wheel'
      • 3.3.2 问题2 fatal error: 'cstddef' file not found
      • 3.3.3 问题3 clang: error: unsupported CUDA gpu architecture: sm_90
  • 4. 总结
  • 5. 参考资料

1. 源由

前面关于Jetson Orin Nano板子的软件安装已经总结了不少,不过这个板子最大的好处是GPU的运算能力,比如:《ubuntu22.04@Jetson Orin Nano之OpenCV安装》。

不过最近发现目前安装的tensorflow 2.16.1版本,在做运算时,压根没有用到GPU,而是在大量的使用CPU计算。这个就有点郁闷了,到底原因出在哪里?必须Fix~~

2. 问题

Tensorflow跑以下示例代码的时候,发现jtop中6个CPU占用率都跑满了。

  • 《Jammy@Jetson Orin - Tensorflow & Keras Get Started: 004 Keras Pre-Trained ImageNet Models》
  • 《Jammy@Jetson Orin - Tensorflow & Keras Get Started: 005 Keras Fine Tune Pre-Trained Models GTSRB》

显然,Jetson Orin Nano是满满的可以跑GPU的,怎么到CPU上去运算了?

初步怀疑就是Tensorflow版本没有支持NVIDIA的GPU。

3. 分析

3.1 当前版本Tensorflow 2.16.1

通过之前安装命令,以及Tensorflow官网安装的信息看,当前安装的版本应该只是CPU版本,并非GPU的版本。

  • Jammy@Jetson Orin - Tensorflow & Keras Get Started: 000 setup for tutorial
  • Tensorflow - Install TensorFlow with pip

3.2 GPU版本二进制安装

$ sudo pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v60dp tensorflow==2.15.0+nv24.03
  • How to install tensorflow with GPU support on Jetson Orin Nano?
  • Installing TensorFlow for Jetson Platform

当前JetPack 6.0DP 支持的Tensorflow版本,暂不支持2.16.1版本
在这里插入图片描述

3.3 GPU版本源代码安装

为了安装Tensorflow 2.16.1最新发布稳定版本,只有最后的一个选择,从源代码编译。

  • Tensorflow - Build from source

在Linux 36.2@Jetson Orin Nano之基础环境构建基础上建立编译环境:

$ sudo apt-get install bazel-bootstrap
$ sudo apt-get install clang
$ sudo apt-get install python3-clang$ cd ~/Downloads
$ wget https://github.com/bazelbuild/bazelisk/releases/download/v1.8.1/bazelisk-linux-arm64
$ chmod +x bazelisk-linux-arm64
$ sudo mv bazelisk-linux-arm64 /usr/local/bin/bazel
$ which bazel
$ /usr/local/bin/bazel$ export TF_PYTHON_VERSION=3.10

目前上无法顺利编译通过,请持续关注:Tensorflow v2.16.1 GPU version local build on Jetson Orin Nano failed

3.3.1 问题1 ERROR: no such target ‘//tensorflow/tools/pip_package:wheel’

根据官网指南,执行报错:ERROR: no such target ‘//tensorflow/tools/pip_package:wheel’

$ bazel build //tensorflow/tools/pip_package:wheel --repo_env=WHEEL_NAME=tensorflow --config=cuda
... ...
WARNING: The following configs were expanded more than once: [tensorrt, cuda_clang, cuda]. For repeatable flags, repeats are counted twice and may lead to unexpected behavior.
ERROR: Skipping '//tensorflow/tools/pip_package:wheel': no such target '//tensorflow/tools/pip_package:wheel': target 'wheel' not declared in package 'tensorflow/tools/pip_package' defined by /home/daniel/OpenCV/tensorflow/tensorflow/tools/pip_package/BUILD (Tip: use `query "//tensorflow/tools/pip_package:*"` to see all the targets in that package)
WARNING: Target pattern parsing failed.
ERROR: no such target '//tensorflow/tools/pip_package:wheel': target 'wheel' not declared in package 'tensorflow/tools/pip_package' defined by /home/daniel/OpenCV/tensorflow/tensorflow/tools/pip_package/BUILD (Tip: use `query "//tensorflow/tools/pip_package:*"` to see all the targets in that package)
INFO: Elapsed time: 1.498s
INFO: 0 processes.
FAILED: Build did NOT complete successfully (0 packages loaded)

调整编译目标:build_pip_package

$ bazel query "//tensorflow/tools/pip_package:*"
//tensorflow/tools/pip_package:BUILD
//tensorflow/tools/pip_package:MANIFEST.in
//tensorflow/tools/pip_package:README
//tensorflow/tools/pip_package:THIRD_PARTY_NOTICES.txt
//tensorflow/tools/pip_package:build_pip_package
//tensorflow/tools/pip_package:build_pip_package.sh
//tensorflow/tools/pip_package:included_headers
//tensorflow/tools/pip_package:included_headers_gather
//tensorflow/tools/pip_package:licenses
//tensorflow/tools/pip_package:setup.py
//tensorflow/tools/pip_package:simple_console
//tensorflow/tools/pip_package:simple_console.py
//tensorflow/tools/pip_package:xla_build/CMakeLists.txt
//tensorflow/tools/pip_package:xla_cmake
//tensorflow/tools/pip_package:xla_compiled_cpu_runtime_srcs.txt
//tensorflow/tools/pip_package:xla_compiled_cpu_runtime_srcs.txt_file
Loading: 0 packages loaded
$ bazel build //tensorflow/tools/pip_package:build_pip_package --repo_env=WHEEL_NAME=tensorflow --config=cuda

3.3.2 问题2 fatal error: ‘cstddef’ file not found

编译报错,头文件找不到

$ bazel build //tensorflow/tools/pip_package:build_pip_package --repo_env=WHEEL_NAME=tensorflow --config=cuda
... ...
WARNING: The following configs were expanded more than once: [tensorrt, cuda_clang, cuda]. For repeatable flags, repeats are counted twice and may lead to unexpected behavior.
INFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (704 packages loaded, 50634 targets configured).
INFO: Found 1 target...
ERROR: /home/daniel/.cache/bazel/_bazel_daniel/11588ef030db288b35dd97b3c9d34cbc/external/llvm-project/llvm/BUILD.bazel:191:11: Compiling llvm/lib/Demangle/RustDemangle.cpp failed: (Exit 1): clang failed: error executing command (from target @llvm-project//llvm:Demangle) /usr/lib/llvm-14/bin/clang -MD -MF bazel-out/aarch64-opt/bin/external/llvm-project/llvm/_objs/Demangle/RustDemangle.pic.d ... (remaining 85 arguments skipped)
In file included from external/llvm-project/llvm/lib/Demangle/RustDemangle.cpp:14:
external/llvm-project/llvm/include/llvm/Demangle/Demangle.h:12:10: fatal error: 'cstddef' file not found
#include <cstddef>^~~~~~~~~
1 error generated.
Target //tensorflow/tools/pip_package:build_pip_package failed to build
Use --verbose_failures to see the command lines of failed build steps.
INFO: Elapsed time: 731.518s, Critical Path: 0.46s
INFO: 24 processes: 17 internal, 7 local.
FAILED: Build did NOT complete successfully

安装· libstdc+±12-dev·库

$ sudo apt install libstdc++-12-dev

3.3.3 问题3 clang: error: unsupported CUDA gpu architecture: sm_90

$ bazel build //tensorflow/tools/pip_package:build_pip_package --repo_env=WHEEL_NAME=tensorflow --config=cuda
... ...
ERROR: /home/daniel/.cache/bazel/_bazel_daniel/11588ef030db288b35dd97b3c9d34cbc/external/local_xla/xla/stream_executor/cuda/BUILD:505:13: Compiling xla/stream_executor/cuda/cuda_conditional_kernels.cu.cc failed: (Exit 1): clang failed: error executing command (from target @local_xla//xla/stream_executor/cuda:cuda_conditional_kernels) /usr/lib/llvm-14/bin/clang -MD -MF bazel-out/aarch64-opt/bin/external/local_xla/xla/stream_executor/cuda/_objs/cuda_conditional_kernels/cuda_conditional_kernels.cu.pic.d ... (remaining 72 arguments skipped)
clang: warning: CUDA version is newer than the latest supported version 11.5 [-Wunknown-cuda-version]
clang: error: unsupported CUDA gpu architecture: sm_90
Target //tensorflow/tools/pip_package:build_pip_package failed to build
Use --verbose_failures to see the command lines of failed build steps.
INFO: Elapsed time: 853.288s, Critical Path: 61.65s
INFO: 11696 processes: 8427 internal, 3269 local.
FAILED: Build did NOT complete successfully

4. 总结

小白入手,通常都是卡在这种没有技术含量的事情上,而这些会导致真正核心技术的发展。

希望通过这些简单的总结,帮助到各位希望学习技术的朋友,在后面的技术道路上走的更顺畅,减少这些由于不熟悉导致的浪费时间。把重点放在技术的学习、突破和创新上。

另外,不同版本的代码之间可能存在或多或少的兼容性问题。

  • Multiple executive warnings after switching tensorflow from 2.16.1 CPU to v60dp tensorflow==2.15.0+nv24.03 GPU version

这也是在技术管理上最重要的一环:版本管理。

5. 参考资料

【1】Linux 36.2@Jetson Orin Nano之基础环境构建
【2】Linux 36.2@Jetson Orin Nano之Hello AI World!
【3】ubuntu22.04@Jetson Orin Nano之OpenCV安装
【3】ubuntu22.04@Jetson Orin Nano之CSI IMX219安装
【3】ubuntu22.04@Jetson Orin Nano安装&配置VNC服务端
【3】Jammy@Jetson Orin - Tensorflow & Keras Get Started: 000 setup for tutorial

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/830416.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《21天学通C++》(第十一章)多态

为什么需要多态&#xff1f; 为了最大限度地减少代码&#xff0c;提高可读性 1.虚函数 虚函数是C中的一种特殊成员函数&#xff0c;它允许在派生类&#xff08;也称为子类&#xff09;中重写&#xff08;覆盖&#xff09;基类的实现&#xff0c;使用virtual进行声明 在C中&am…

vue+element-ui实现横向长箭头,横向线上下可自定义文字(使用after伪元素实现箭头)

项目场景&#xff1a; 需要实现一个长箭头&#xff0c;横向线上下可自定义文字 代码描述 <div><span class"data-model">{{ //上方文字}}</span><el-divider class"q"> </el-divider>//分隔线<span class"data-mod…

贝叶斯统计实战:Python引领的现代数据分析之旅

贝叶斯统计这个名字取自长老会牧师兼业余数学家托马斯贝叶斯(Thomas Bayes&#xff0c;1702—1761)&#xff0c;他最先推导出了贝叶斯定理&#xff0c;该定理于其逝世后的1763年发表。但真正开发贝叶斯方法的第一人是Pierre-Simon Laplace(1749—1827)&#xff0c;因此将其称为…

智慧农业设备——虫情监测系统

随着科技的不断进步和农业生产的日益现代化&#xff0c;智慧农业成为了新时代农业发展的重要方向。其中&#xff0c;虫情监测系统作为智慧农业的重要组成部分&#xff0c;正逐渐受到广大农户和农业专家的关注。 虫情监测系统是一种基于现代传感技术、图像识别技术和大数据分析技…

【Kafka】Kafka与flume整合(四)

Kafka和Flume整合 Kafka与flume整合流程 Kafka整合flume流程图 flume主要是做日志数据(离线或实时)地采集。 图-1 数据处理 图-1显示的是flume采集完毕数据之后&#xff0c;进行的离线处理和实时处理两条业务线&#xff0c;现在再来学习flume和kafka的整合处理。 配置flume…

【C++算法竞赛 · 图论】树

目录 前言 树 树的定义 树的相关概念 树的遍历 1 先序遍历 2 中序遍历 3 后序遍历 前言 前两篇文章&#xff08;【C算法竞赛 图论】图论基础、【C算法竞赛 图论】图的存储&#xff09;中&#xff0c;介绍了图的相关概念与存储&#xff0c;还不了解的可以去补补课。 …

【ETAS CP AUTOSAR工具链】RTE层基本概念与开发流程

本篇文章续接上篇文章【ETAS CP AUTOSAR工具链】基本概念与开发流程&#xff0c;继续按上篇文章描述的ETAS CP工具链进行开发的基本框架&#xff0c;讲述了“RTE集成与配置”这部分的基本概念与开发流程。 RTE&#xff08;Runtime Environment&#xff09;处于应用层与基础软件…

标贝语音识别技术在金融领域中的应用实例

随着语音识别技术与文本挖掘、自然语言处理等技术的不断融合&#xff0c;智能语音交互技术在金融领域中爆发了出巨大的应用潜力。标贝科技根据自身与金融领域合作的经验为大家梳理出以下几点智能语音识别技术在金融领域中的应用实例。 一、智能柜台服务 语音识别的主要功能就…

微PE制作系统重装以及w11详细安装教程windows11安装pe系统制作

1.在电脑上插入一个U盘&#xff08;U盘的内存不小于8G&#xff09;&#xff0c;鼠标右击插入的【U盘】选择【格式化】。 2.文件系统选择【NTFS】&#xff0c;点击【开始】。 3.点击【确定】。 4.格式化完成&#xff0c;点击【确定】。 5.鼠标右击【PE工具箱V2.3】压缩包选…

unity项目《样板间展示》开发:菜单界面

unity项目《样板间展示》开发&#xff1a;菜单界面 前言UI菜单创建逻辑实现结语 前言 这是这个项目demo教程的最后一节&#xff0c;这节是菜单界面部分的创建 UI菜单创建 创建一个新的场景&#xff0c;在Scene文件中右键选择Create->Scene&#xff0c;创建新的场景 在场景…

【深耕 Python】Data Science with Python 数据科学(16)Scikit-learn机器学习(一)

写在前面 关于数据科学环境的建立&#xff0c;可以参考我的博客&#xff1a; 【深耕 Python】Data Science with Python 数据科学&#xff08;1&#xff09;环境搭建 往期数据科学博文&#xff1a; 【深耕 Python】Data Science with Python 数据科学&#xff08;2&#xf…

unity3d使用3D WebView播放网页中的视频

Unity2021.3.35f1&#xff0c;硬件ESP32-Cam&#xff0c;3D WebView插件 1.新建工程&#xff0c;导入3D WebView for Winfows和3D WebView for Android 2.打开场景Assets\Vuplex\WebView\Demos\Scenes\2_CanvasWebViewDemo 3.修改Canvas的Render Mode为Screen Space-Camera&am…

【C++】学习笔记——string_1

文章目录 四、模板初阶2. 类模板 五、STL简介1. 什么是STL2. STL的六大组件3. 如何学习STL 六、string类1. string类对象的容量操作 未完待续 四、模板初阶 2. 类模板 函数模板就是&#xff1a;模板 函数&#xff1b;类模板就是&#xff1a;模板 类。和函数模板用法基本相同…

Rust HashMap

一、HashMap是什么&#xff0c;怎么用 1、HashMap是什么 HashMap 也是 Rust 标准库中提供的集合类型&#xff0c;但是又与动态数组不同&#xff0c;HashMap 中存储的是一一映射的 KV 键值对&#xff0c;并提供了平均时间复杂度为 O(1) 的查询方法。 2、HashMap怎么用 &…

RustGUI学习(iced)之小部件(三):如何使用下拉列表pick_list?

前言 本专栏是学习Rust的GUI库iced的合集&#xff0c;将介绍iced涉及的各个小部件分别介绍&#xff0c;最后会汇总为一个总的程序。 iced是RustGUI中比较强大的一个&#xff0c;目前处于发展中&#xff08;即版本可能会改变&#xff09;&#xff0c;本专栏基于版本0.12.1. 概述…

Objective-C大爆炸:从零到单例模式

oc学习笔记&#xff08;一&#xff09; 文章目录 oc学习笔记&#xff08;一&#xff09;oc与c语言的区别#import的用法foundation框架NSLog函数NSString类型符号的作用oc中的数据类型 类与对象概念&#xff1a; 创建第一个类类的定义类的实现类加载对象的产生和使用 self语法id…

最新springboot家乡特色推荐系统

采用技术 最新springboot家乡特色推荐系统的设计与实现~ 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBootMyBatis 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 页面展示效果 系统功能 系统首页 用户注册 文章分享 个人中心 管理员模…

经典文献阅读之--EarlyBird(用于BEV中多视图跟踪的早期融合)

0. 简介 多视角聚合技术有望克服多目标检测和跟踪中的遮挡和漏检问题。最近的多视角检测和三维物体检测方法通过将所有视角投影到地面平面上&#xff0c;并在鸟瞰图中进行检测&#xff0c;取得了巨大的性能提升。《EarlyBird: Early-Fusion for Multi-View Tracking in the Bi…

Servlet(三个核心API介绍以及错误排查)【二】

文章目录 一、三个核心API1.1 HttpServlet【1】地位【2】方法 1.2 HttpServletRequest【1】地位【2】方法【3】关于构造请求 1.3 HttpServletResponse【1】地位【2】方法 四、涉及状态码的错误排查&#xff08;404……&#xff09;五、关于自定义数据 ---- body或query String …

计算机网络 备查

OSI 七层模型 七层模型协议各层实现的功能 简要 详细 TCP/IP协议 组成 1.传输层协议 TCP 2.网络层协议 IP 协议数据单元&#xff08;PDU&#xff09;和 封装 数据收发过程 数据发送过程 1. 2.终端用户生成数据 3.数据被分段&#xff0c;并加上TCP头 4.网络层添加IP地址信息…