2024年深圳杯东三省数学建模联赛A题论文首发+问题一代码分享

深圳杯A题论文+代码分享资料链接:链接:https://pan.baidu.com/s/1L2NVgoefSW-yuqZjEB3wcw 
提取码:sxjm 

基于优化模型的多个火箭残骸的准确定位

摘要

在现代航天技术中,火箭是实现空间探索的关键工具。由于火箭发射过程中的高成本和复杂性,对火箭残骸的回收与重用变得越来越重要。本文将基于题目给出数据构建优化模型对火箭残骸进行准确定位。

问题一,单个残骸音爆定位分析。首先需要将设备的地理坐标(经度、纬度)转换为一个更适合计算的坐标系统,残骸发生音爆的位置(x,y,z) 和时间t,使用多边测量技术建立方程组。为了提高计算精度构建一个优化模型进行求解,以预测时间和实际时间差的平方和为目标函数。应用 BFGS 方法进行最小化,找到最小化 objective_function 的变量值,这些值代表了音爆源的最佳估计位置和时间。

问题二、三,多残骸音爆的监测和定位,确定每个监测设备接收到的不同音爆数据属于哪个具体的残骸。涉及到了最优值的求解,属于优化模型。建立一个数学模型来解决多源定位问题。设置一个优化问题,以确定该残骸的位置和音爆时间。目标是最小化预测的音爆抵达时间和实际记录时间之间的误差。以时间差约束、速度约束、高度约束、声速随高度变化、考虑风速和风向的影响作为约束条件,使用非线性最优化方法差分进化进行求解。通过三维可视化验证了模型的有效性,并展示了监测设备和残骸的空间分布。

问题四,误差修正和精准定位,考虑到设备记录时间可能存在高达0.5秒的随机误差。首先,为每个设备记录的时间添加一个随机误差,模拟实际条件中可能的测量不准确性。这个误差可以通过添加一个均值为0,标准差为0.5秒的高斯(正态)噪声来模拟。优化目标函数为计算了预测的音爆抵达时间和观测时间之间的加权平方差之和。模型生成的结果通过三维可视化和时间分析进行了展示和验证,表明模型能够在存在随机测量误差时有效地估计残骸位置。

整体而言,通过建立数学模型并利用差分进化算法的全局优化能力,解决了复杂的火箭残骸定位问题,即便在存在测量误差的挑战下也能给出准确的位置估计。这为类似问题提供了一个强大的求解框架和验证方法。

关键词优化模型,火箭残骸准确定位,坐标转化,模型修正

23页论文 1万字+ 十页无水印照片

一、模型的建立与求解

5.1 问题一模型的建立与求解

5.1.1 数据分析

为了更加直观地展示原始位置,利用python以及题目给出的数据,绘制了可视化如下所示

表1问题一给出数据

设备经度(°)纬度(°)高程(m)音爆抵达时间(s)
A110.24127.204824100.767
B110.78027.456727112.220
C110.71227.785742188.020
D110.25127.825850258.985
E110.52427.617786118.443
F110.46727.921678266.871
G110.04727.121575163.024

图1可视化结果

在这个坐标系中,设备A位于图中较高的位置,而设备G位于相对较低的位置。这种布局说明设备被布置在具有不同高度的地形上。通过这种三维分布,设备能够探测和追踪从不同高度和方向传来的音爆信号。

这张图也展示了设备之间的相对距离,这对于后续的分析很重要,比如利用声波到达的时间差来定位音爆发生的位置。再利用音爆抵达时间增加了声波传播球体的三维可视化,它展示了以七个监测设备为圆心,音爆抵达时间转换为半径(考虑声速)的球体。如下所示

图2可视化结果

每个球体用不同的颜色表示,以区分它们是从哪个设备中心展开的,与设备的颜色标记相对应。这些彩色的透明球体在三维空间中相互重叠。

l 监测设备位置图中显示了每个监测设备的位置,用大小相等且颜色不同的点表示,每个点的具体位置都标记在了对应的坐标上。

l 声波传播球体每个设备的声波传播球体通过一个半透明的网状结构表示,球体的大小(半径)与音爆抵达各设备的时间成比例。球体的交点是关键区域,因为这些区域表示了可能的音爆源位置。

l 球体交叉在图中,可以看到这些球体在某些区域相交。这些交点(或交叉区域)有助于确定音爆的原始位置。理论上,所有球体的交点将形成一个或多个共同的交集区域,即是音爆的发生位置。

l 三维空间理解在三维空间中,Z轴的伸展有助于了解球体高程方面的差异。球体的覆盖层和重叠区域的大小和形状提供了音爆源位置可能的高度信息。

5.1.2 单个残骸定位的建立

首先需要将设备的地理坐标(经度、纬度)转换为一个更适合计算的坐标系统,如笛卡尔坐标系。可以使用下列近似方法

将纬度转换为Y坐标=纬度×111263Y=纬度×111263米(纬度每度的距离)

将经度转换为X坐标=经度×97304X=经度×97304米(经度每度的距离,取决于纬度)

高程(Z坐标)直接使用给定的米值

最终具体的转化结果为表1转化结果

设备X (米)Y (米)Z (米)时间 (秒)
A10,726,890.263,026,798.65824100.767
B10,779,337.123,054,836.93727112.22
C10,772,720.453,091,442.46742188.02
D10,727,863.303,095,892.98850258.985

残骸发生音爆的位置(x,y,z) 和时间t。给定7台设备的三维坐标和音爆抵达时间,可以使用多边测量技术建立以下方程组,对于每个设备i:

这里,(xi,yi,zi)和ti分别是第i台设备的坐标和音爆抵达时间。需要解这个方程组来找出(x,y,z,t)。

对于四个变量的方程组求解,最少需要四个方程,即至少需要布置四台监测设备,即可完成后续验证。这里题目给出了七台监测设备,因此,构建一个优化模型进行求解,以预测时间和实际时间差的平方和为目标函数,定义了一个 objective_function,该函数接受四个变量(x, y, z 位置坐标和音爆发生的时间 t),计算了预测的音爆抵达各个设备的时间,并将其与实际抵达时间进行比较。应用 BFGS 方法进行最小化,找到最小化 objective_function 的变量值,这些值代表了音爆源的最佳估计位置和时间。

具体模型如下所示

目标函数

其中,

l v 是包含x,y,z,t 的向量。

l t 是音爆发生时间。

l (x,y,z) 是音爆发生的位置。

l c 是声速。

l (xi,yi,zi,ti) 是第 i 个设备的坐标和音爆抵达时间。

l n 是设备数量。

目标是最小化f(v),即预测时间和实际时间的平方差的和。

5.1.3 单个残骸定位的求解

最小化过程

5.2 问题二三模型的建立与求解

5.2.1 数据分析

声波从音爆源到监测设备的传播是一个球面波,其半径随时间增加而扩大。对于每个残骸,它在空中发生音爆时会产生一个扩散的声波球。与问题一给出数据相同,为了更加直观的展示给出数据,首先以A为例绘制了二维平面、三维平面的声波球。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/829056.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt:学习笔记一

一、工程文件介绍 1.1 main.cpp #include "widget.h" #include <QApplication> // 包含一个应用程序类的头文件 //argc&#xff1a;命令行变量的数量&#xff1b;argv&#xff1a;命令行变量的数组 int main(int argc, char *argv[]) {//a应用程序对象&…

Shell和Linux权限

目录 shell Liunx权限 用户 sudo Linux的权限管理 文件访问者的分类 文件的属性 文件的权限 文件全权限值的表示方法 1.字符表示 2.八进制数值表示 用户符号 修改文件访问权限 修改文件拥有者 修改拥有者和所属组 修改所属组 文件目录的权限的含义 问题 粘滞…

程序员学CFA——数量分析方法(四)

数量分析方法&#xff08;四&#xff09; 常见概率分布基本概念离散型随机变量与连续型随机变量离散型随机变量连续型随机变量 分布函数概率密度函数&#xff08;PDF&#xff09;累积分布函数&#xff08;CDF&#xff09; 离散分布离散均匀分布伯努利分布二项分布定义股价二叉树…

Linux系统编程---线程同步

一、同步概念 同步即协同步调&#xff0c;按预定的先后次序运行。 协同步调&#xff0c;对公共区域数据【按序】访问&#xff0c;防止数据混乱&#xff0c;产生与时间有关的错误。 数据混乱的原因&#xff1a; 资源共享(独享资源则不会)调度随机(意味着数据访问会出现竞争)线…

算法模版自用(杂)

文章目录 算法库函数next_permutation(start,end) prev_permutation(start,end) (全排列函数)nth_element &#xff08;求第k小值&#xff09;next(it,num),prev(it,num)min_element(begin(),end()),max_element(begiin(),end()) (取最小值最大值) _int128的输入输出STLlist 数…

内容互动性的提升策略:Kompas.ai的智能工具

在数字营销的新时代&#xff0c;内容的互动性已成为提升用户参与度和品牌忠诚度的关键因素。互动性内容不仅能够吸引用户的注意力&#xff0c;还能够促进用户与品牌的沟通和交流&#xff0c;从而加深用户对品牌的理解和认同。本文将分析互动性内容在提升用户参与度中的作用及其…

基于DEAP数据集的四种机器学习方法的情绪分类

在机器学习领域&#xff0c;KNN&#xff08;K-Nearest Neighbors&#xff09;、SVM&#xff08;Support Vector Machine&#xff09;、决策树&#xff08;Decision Tree&#xff09;和随机森林&#xff08;Random Forest&#xff09;是常见且广泛应用的算法。 介绍 1. KNN&am…

【Java】从0实现一个消息队列中间件

从0实现一个消息队列中间件 什么是消息队列需求分析核心概念核心API交换机类型持久化网络通信网络通信API 消息应答 模块划分项目创建创建核心类创建Exchange创建MSGQueue创建Binding创建Message 数据库设计配置sqlite实现创建表和数据库基本操作 实现DataBaseManager创建DataB…

按现价和不变价计算与公布的统计指标主要有哪些

在经济统计和分析工作中 , 有些指标可以直接用实物量表示 , 如粮食和工业品产量等&#xff1b;而有些指标则是用价值量表示的 , 如全国居民人均可支配收入、社会消费品零售总额、商品房销售额等。在计算价值量指标时&#xff0c;一般均要考虑采用什么价格来计算。统计上常用的价…

设计模式(三):抽象工厂模式

设计模式&#xff08;三&#xff09;&#xff1a;抽象工厂模式 1. 抽象工厂模式的介绍2. 抽象工厂模式的类图3. 抽象工厂模式的实现3.1 创建摩托车的接口3.2 创建摩托车的具体实现3.3 创建汽车的接口3.4 创建汽车的具体产品3.5 创建抽象工厂3.6 创建具体工厂3.7 创建工厂生成器…

苹果一次性开源了8个大模型! 包含模型权重、训练日志和设置,OpenELM全面开源

不以开放性著称的苹果居然同时开源了大模型的权重、训练和评估框架&#xff0c;涵盖训练日志、多个保存点和预训练设置。同时升级计算机视觉工具包 CVNets 为 CoreNet&#xff01;支持 OpenELM&#xff01; ▲图1.由Stable Diffusion3生成。 OpenELM是Apple苹果公司最新推出的…

律师口才训练技巧课程介绍?

律师口才训练技巧课程介绍 一、课程背景与目标 律师口才作为法律职业的核心能力之一&#xff0c;对于律师在**辩论、法律咨询、谈判协商等场合的表现具有至关重要的作用。然而&#xff0c;许多律师在口才方面存在不足&#xff0c;难以充分发挥自己的专业能力。因此&#xff0c;…

底层逻辑(1) 是非对错

底层逻辑(1) 是非对错 关于本书 这本书的副标题叫做&#xff1a;看清这个世界的底牌。让我想起电影《教父》中的一句名言&#xff1a;花半秒钟就看透事物本质的人&#xff0c;和花一辈子都看不清事物本质的人&#xff0c;注定是截然不同的命运。 如果你看过梅多丝的《系统之美…

“AI 程序员入职系列”第二弹:如何利用通义灵码光速改写项目编程语言?

通义灵码入职阿里云云原生团队后&#xff0c;已经展示过 Ta 生成单元测试和自动生成代码的强大实力。今天&#xff0c;阿里云后端工程师云徊将从项目开发的实际需求出发&#xff0c;演示通义灵码在开发工作中可提供的帮助。 通义灵码在 Git 开发项目中起到了哪些作用&#xff…

WildCard开通GitHub Copilot

更多AI内容请关注我的专栏&#xff1a;《体验AI》 期待您的点赞&#x1f44d;收藏⭐评论✍ WildCard开通GitHub Copilot GitHub Copilot 简介主要功能工作原理 开通过程1、注册Github账号2、准备一张信用卡或虚拟卡3、进入github copilot页4、选择试用5、选择支付方式6、填写卡…

为什么单片机控制电机需要加电机驱动

通常很多地方只是单纯的单片机MCU没有对电机的驱动能力&#xff0c;或者是介绍关于电机驱动的作用&#xff0c;如&#xff1a; 提高电机的效率和精度。驱动器采用先进的电子技术和控制算法&#xff0c;能够精准控制电机的参数和运行状态&#xff0c;提高了电机的效率和精度。拓…

【Hello算法】 > 第 3 关 >栈与队列

数据结构 之 数组与链表 1 栈 / 栈的常见操作、实现、应用2 队列 /队列的常见操作、实现、应用3 双向队列4 Tips ———————————————————————————————————————————————————————————- ————————————————…

Hybrid Homomorphic Encryption:SE + HE

参考文献&#xff1a; [NLV11] Naehrig M, Lauter K, Vaikuntanathan V. Can homomorphic encryption be practical?[C]//Proceedings of the 3rd ACM workshop on Cloud computing security workshop. 2011: 113-124.[MJS16] Maux P, Journault A, Standaert F X, et al. To…

STM32应用开发教程进阶--UART串口重定向(printf)

实现目标 1、掌握STM32 HAL库的串口重定向 2、具体目标&#xff1a;1、实现printf “打印”各种常用的类型的数据变量 一、串口“打印” UART串口通信协议是我们常用的通信协议&#xff08;UART、I2C、SPI等&#xff09;之一&#xff0c;全称叫做通用异步收发传输器&#xf…

Druid高性能数据库连接池?SpringBoot整合MyBatis整合SpringMVC整合Druid

文章目录 Druid高性能数据库连接池&#xff1f;SpringBoot整合MyBatis整合SpringMVC整合Druid异常记录spring-boot-starter-parent作用Druid介绍什么是数据库连接池&#xff1f;为什么选择Druid数据库连接池整合SpringBoot,MyBatis,SpringMVC,Druid到Maven项目的真个流程pom文件…