《动手学深度学习(Pytorch版)》Task01:初识深度学习——4.22打卡

《动手学深度学习(Pytorch版)》Task01:初识深度学习

  • 深度学习介绍
    • AI地图
    • 深度学习任务
      • 图片分类
      • 物体检测和分割
      • 样式迁移
      • 人脸合成
      • 文字生成图片
      • 文字生成
      • 无人驾驶
    • 案例:广告点击
      • 完整过程
    • QA
      • Q:机器学习的可解释性:机器学习在图片分割领域为什么有效?
      • Q:深度学习无法用数学规范表述,只能从直觉上理解对吗?
  • 引言-相关名词整理
    • 关键组件
    • 监督学习
      • 回归
      • 分类
      • 标记问题
      • 推荐系统
      • 序列学习
    • 无监督学习
    • 与环境互动
    • 强化学习
  • Datawhale环境配置讲解
  • 安装
    • 安装深度学习框架和`d2l`软件包
    • 下载 D2L Notebook
  • 李沐:GPT时代AI怎么学?

深度学习介绍

AI地图

在这里插入图片描述

  • 自然语言处理:起源于符号学,如机器翻译,人在几秒钟能反应过来,属于感知问题
  • 计算机视觉:图片由像素组成,难以用符号学解释,在图片中进行推理,大部分用概率模型或者机器学习
  • 深度学习:机器学习的一种

深度学习任务

图片分类

输入图像识别类别

著名数据集Image-net

物体检测和分割

  • 目标检测:输入图像识别图像中每个物体的类别和框
  • 语义分割:识别每个像素的类别

在这里插入图片描述

样式迁移

将一个图像中的样式应用在另一图像之上

在这里插入图片描述

人脸合成

请添加图片描述

文字生成图片

在这里插入图片描述

文字生成

以QA形式进行文字生成,如GPT-3

在这里插入图片描述

无人驾驶

在这里插入图片描述

案例:广告点击

场景:给定用户输入如何返回相应的广告

三个阶段:

  1. 触发
  2. 点击率预估 —> 机器学习模型
  3. 排序

**预测:**特征提取 —> 模型 —> 点击率预测

**训练:**训练数据(过去广告展现和用户点击) —> 特征和用户点击 —> 模型

完整过程

在这里插入图片描述

领域专家:关心模型应用产生的影响,提需求的人,甲方

数据科学家:将原始数据转换成机器可以理解的数据,乙方

AI专家:训练模型并且关注模型的进一步提升

QA

Q:机器学习的可解释性:机器学习在图片分割领域为什么有效?

A:深度学习的可解释性(人类理解层面)现在很难定论,但是可以从一些角度解释模型为什么有效

Q:深度学习无法用数学规范表述,只能从直觉上理解对吗?

A:不一定,模型可以用数学表述,但是目前难以用数学来解释模型为什么工作/不工作

引言-相关名词整理

关键组件

数据(data)

数据集(dataset)

模型(model):任一调整参数后的程序

参数(parameter):可以调整程序行为的旋钮

学习算法(learning algorithm):使用数据集来选择参数的元程序

样本(example, sample)数据点(data point)数据实例(data instance):组成数据集的数据

独立同分布(independently and identically distributed, i.i.d.)

特征(features,或协变量(covariates)):一组特征属性组成一个样本

维数(dimensionality):特征向量的长度

深度学习(deep learning):关注功能强大的模型,这些模型由神经网络错综复杂的交织在一起,包含层层数据转换

目标函数(objective function):量化模型的有效性的函数

损失函数(loss function,或cost function):习惯上取目标函数越低越好,所以叫损失

训练数据集(training dataset,或称为训练集(training set)):用于模型训练而收集的样本,拟合模型参数

测试数据集(test dataset,或称为测试集(test set)):用于测试模型性能,模型没有见过的“新数据集”,评估拟合的模型

过拟合(overfitting):模型在训练集上表现良好,但测试集效果很差

梯度下降(gradient descent):常用的优化算法,在每个步骤中,梯度下降法都会检查每个参数,看看如果仅对该参数进行少量变动,训练集损失会朝哪个方向移动。 然后,它在可以减少损失的方向上优化参数。

监督学习

监督学习(supervised learning):在“给定输入特征”的情况下预测标签。每个“特征-标签”对都称为一个样本(example)。

回归

回归(regression):训练一个回归函数来输出一个数值

平方误差(squared error):预测值与实际值之差的平方,预测数值最常用

分类

分类(classification):练一个分类器来输出预测的类别

类别(category,正式称为(class))

二项分类(binomial classification):只有两个类别的分类

多项分类(multiclass classification):有两个以上的类别

交叉熵(cross-entropy):所有标签分布的预期损失值

层次分类(hierarchical classification):一些分类任务的变体可以用于寻找层次结构,层次结构假定在许多类之间存在某种关系

标记问题

多标签分类(multi-label classification):学习预测不相互排斥的类别的问题

推荐系统

推荐系统(recommender system):向特定用户进行“个性化”推荐

序列学习

序列学习(sequence Learning):摄取可变长度的输入序列 和/或 预测可变长度的输出序列

无监督学习

无监督学习(unsupervised learning):数据中不含有“目标”的机器学习问题

聚类(clustering):没有标签的情况下给数据分类

主成分分析(principal component analysis):用少量的参数来准确地捕捉数据的线性相关属性

因果关系(causality)和概率图模型(probabilistic graphical models):根据经验数据发现属性之间的关系

生成对抗性网络(generative adversarial networks):通过两个神经网络相互博弈的方式进行学习,生成数据

与环境互动

离线学习(offline learning):根据预先收集的数据进行模型训练,训练开始后不与环境交互

分布偏移(distribution shift):训练集和测试集之间的数据分布不同,导致模型的泛化性能很差。

强化学习

强化学习(reinforcement learning):让智能体(agent)在与环境交互的过程中,通过学习最优的行为策略,来实现最大的回报或目标。

智能体(agent)

观察(observation)

动作(action)

奖励(reward)

策略(policy):强化学习的目标是产生一个好的策略

在这里插入图片描述

学分分配(credit assignment):决定哪些行为是值得奖励的,哪些行为是需要惩罚的。

马尔可夫决策过程(markov decision process):环境可被完全观察到的强化学习问题

上下文赌博机(contextual bandit problem):状态不依赖于之前的操作的强化学习问题

多臂赌博机(multi-armed bandit problem):没有状态,只有一组最初未知回报的可用动作的强化学习问题

神经网络(neural networks):一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。

(layers):线性和非线性处理单元的交替

链式规则(也称为反向传播(backpropagation)):一次性调整网络中的全部参数的规则

dropout :有助于减轻过拟合

表示学习(representation learning):模型自动从数据中抽取特征或表达,以方便后续任务

Datawhale环境配置讲解

视频分为Linux和windows环境配置,本人使用笔记本自带的RTX4060显卡进行配置,所以是windows环境,视频在20:30左右开始

视频内容:

下载 Miniconda

更换镜像源

下载GIT

下载课程 Repo

之前已经配置过conda和pytorch,所以跳过

安装

因为已经安装conda,所以跳过安装Miniconda

安装深度学习框架和d2l软件包

创建conda虚拟环境

conda create -n learning_pytorch python=3.9

激活虚拟环境

conda activate learning_pytorch

确定CUDA driver的版本

运行nvidia-smi, CUDA版本为12.4

在这里插入图片描述

pytorch官网选择比CUDA driver小的最新版本

在这里插入图片描述

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

安装d2l

pip install d2l==0.17.6

下载 D2L Notebook

创建文件夹d2l-zh并下载压缩包

mkdir d2l-zh && cd d2l-zh
curl https://zh-v2.d2l.ai/d2l-zh-2.0.0.zip -o d2l-zh.zip

问题:‘unzip’ 不是内部或外部命令,也不是可运行的程序
或批处理文件。

原因:unzip是linux系统下,windows不自带。

解决方法:下载unzip,官网地址:https://gnuwin32.sourceforge.net/packages/unzip.htm

  1. 选择Binaries;
  2. 下载ZIP;
  3. 最后将下载下来的unzip-5.51-1-bin\bin\unzip.exe文件复制到 C:\Windows\System32 即可。

在这里插入图片描述

在这里插入图片描述

解压,可以正常运行

unzip d2l-zh.zip && del d2l-zh.zip

PS:windows命令提示符(CMD)使用 del 命令来删除文件。

cd pytorch

打开Jupyter笔记本(在Window系统的命令行窗口中运行以下命令前,需先将当前路径定位到刚下载的本书代码解压后的目录)

jupyter notebook

成功打开

在这里插入图片描述

李沐:GPT时代AI怎么学?

原来的深度学习:人在5s可以决策出来的问题

现在的深度学习:一个专业人士1h的工作量

机器学习这么多年在训练上其实没有本质的变化

不同:每几年会把一类模型的做到智能顶点

transformer的智能上限仍在探索中

就算遇到上限,也会去探索新的模型架构

现状:transformer的了解不够深入,下一个架构仍未出现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/828886.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++ STL序列容器】list 双向链表

文章目录 【 1. 基本原理 】【 2. list 的创建 】2.1 创建1个空的 list2.2 创建一个包含 n 个元素的 list(默认值)2.3 创建一个包含 n 个元素的 list(赋初值)2.4 通过1个 list 初始化另一个 list2.5 拷贝其他类型容器的指定元素创…

swagger文档接口根据包分组配置

文章目录 一、引言二、配置2.1 原本配置及效果2.2 更改后配置及效果 三、结束 一、引言 关于接口文档的详细配置可参见文章API文档生成工具-----Knife4j的详细介绍、配置及应用 此文章是基于已经完成基础配置的前提下,如何根据不同包进行分组 二、配置 2.1 原本配置及效果 …

Hadoop实战——MapReduce-字符统计(超详细教学,算法分析)

目录 一、前提准备工作 启动hadoop集群 二、实验过程 1.虚拟机安装先设置端口转发 2.上传对应文件 3.编写Java应用程序 4. 编译打包程序 5. 运行程序 三、算法设计和分析 算法设计 算法分析 四、实验总结 实验目的:给定一份英文文本,统计每个…

matlab新手快速上手5(蚁群算法)

本文根据一个较为简单的蚁群算法框架详细分析蚁群算法的实现过程,对matlab新手友好,源码在文末给出。 蚁群算法简介: 蚁群算法是一种启发式优化算法,灵感来源于观察蚂蚁寻找食物的行为。在这个算法中,解决方案被看作是…

平衡二叉树、红黑树、B树、B+树

Tree 1、前言2、平衡二叉树和红黑树3、B树和B树3.1、B树的构建3.2、B树和B树的区别3.3、数据的存储方式 1、前言 本文侧重在理论方面对平衡二叉树、红黑树、B树和B树的各方面性能进行比较。不涉及编程方面的实现。而关于于平衡二叉树在C中的实现,我的上一篇文章平衡…

Vue Router基础知识整理

Vue Router基础知识整理 1. 安装与使用(Vue3)安装使用 2. 配置路径别名和VSCode路径提示(了解)3. 使用查询字符串或路径传参query动态路由 与 params 4. router-link、定义别名、定义路由名称、编程式导航定义别名 aliasrouter-li…

李沐66_使用注意力机制的seq2seq——自学笔记

加入注意力 1.编码器对每次词的输出作为key和value 2.解码器RNN对上一个词的输出是query 3.注意力的输出和下一个词的词嵌入合并进入RNN 一个带有Bahdanau注意力的循环神经网络编码器-解码器模型 总结 1.seq2seq通过隐状态在编码器和解码器中传递信息 2.注意力机制可以根…

ELK技术介绍:背景、功能及应用场景全面解析

一、ELK概述 ELK是由Elasticsearch、Logstash和Kibana三个开源软件组成的日志管理解决方案,这一组合在近年来得到了广泛的关注和应用。ELK的出现,源于大数据和云计算技术的快速发展,以及对高效日志管理的迫切需求。 随着企业信息化程度…

【10-10-10旁观思维】项目管理必会的思维分析工具 08(送模板~)

👨‍💻👩‍💻面对一个决策或选择,当你犹豫不决时,可以想一下 ⏰10分钟后,自己是怎么看待自己现在的决策,依然保持一致亦或会后悔; ⏰10个月后,你又会如何思…

Javascript 插值搜索与二分搜索

插值搜索和二分搜索都是在有序数组中查找目标元素的算法。它们之间的核心区别在于确定中间元素的方式。 1、二分搜索(Binary Search):二分搜索是一种通过将目标值与数组中间元素进行比较,然后根据比较结果缩小搜索范围的算…

Docker资源管理-数据管理

一、CPU 资源控制: 1.cgroups: cgroups,是一个非常强大的linux内核工具,他不仅可以限制被 namespace 隔离起来的资源, 还可以为资源设置权重、计算使用量、操控进程启停等等。 所以 cgroups(Control grou…

深度剖析SSD掉电保护机制-1

随着固态硬盘(Solid State Drives, SSD)在数据中心、企业存储、个人计算设备等领域广泛应用,其数据安全性与可靠性成为至关重要的考量因素。其中,应对突发电源故障导致的数据丢失风险的掉电保护(Power Loss Protection…

MA-Chitosan MA甲基丙烯酸修饰羧甲基壳聚糖 MA-Chitosan

MA-Chitosan MA甲基丙烯酸修饰羧甲基壳聚糖 MA-Chitosan、 【中文名称】甲基丙烯酸化羧甲基壳聚糖 【英文名称】Chitosan-MA 【结 构】 【纯 度】95%以上 【保 存】-20℃ 【规 格】10mg,500mg,1g,5g,10g 【产品特性】 Chitosan-MA(壳聚糖-甲基丙烯酸…

Verilog基础语法——parameter、localparam与`define

Verilog基础语法——parameter、localparam与define 写在前面一、localparam二、parameter三、define写在最后 写在前面 在使用Verilog编写RTL代码时,如果需要定义一个常量,可以使用define、parameter和localparam三种进行定义与赋值。 一、localparam …

大模型都在用的:旋转位置编码

写在前面 这篇文章提到了绝对位置编码和相对位置编码,但是他们都有局限性,比如绝对位置编码不能直接表征token的相对位置关系;相对位置编码过于复杂,影响效率。于是诞生了一种用绝对位置编码的方式实现相对位置编码的编码方式——…

机器学习day1

一、人工智能三大概念 人工智能三大概念 人工智能(AI)、机器学习(ML)和深度学习(DL) 人工智能:人工智能是研究计算代理的合成和分析的领域。人工智能是使用计算机来模拟,而不是人类…

关于Android中的限定符

很多对于Android不了解或是刚接触Android的初学者来说,对于Android开发中出现的例如layout-large或者drawable-xxhdpi这样的文件夹赶到困惑,这这文件夹到底有什么用?什么时候用?这里简单的说一下。 其实,在上面例子中&…

基于OpenCV的人脸签到系统

效果图 目录文件 camerathread.h 功能实现全写在.h里了 class CameraThread : public QThread {Q_OBJECT public:CameraThread(){//打开序号为0的摄像头m_cap.open(0);if (!m_cap.isOpened()) {qDebug() << "Error: Cannot open camera";}//判断是否有文件,人脸…

iframe实现pdf预览,并使用pdf.js修改内嵌标题,解决乱码问题

项目中遇到文件预览功能,并且需要可以打印文件.下插件对于内网来说有点麻烦,正好iframe预览比较简单,且自带下载打印等功能按钮. 问题在于左上方的文件名乱码,网上找了一圈没有看到解决的,要么就是要收费要会员(ztmgs),要么直接说这东西改不了. 使用: 1.引入 PDF.js 库&…

Spring Boot集成Redisson实现延迟队列

项目场景&#xff1a; 在电商、支付等领域&#xff0c;往往会有这样的场景&#xff0c;用户下单后放弃支付了&#xff0c;那这笔订单会在指定的时间段后进行关闭操作&#xff0c;细心的你一定发现了像某宝、某东都有这样的逻辑&#xff0c;而且时间很准确&#xff0c;误差在1s内…