机器学习day1

一、人工智能三大概念

人工智能三大概念 人工智能(AI)、机器学习(ML)和深度学习(DL)

人工智能:人工智能是研究计算代理的合成和分析的领域。人工智能是使用计算机来模拟,而不是人类的大脑。

人工智能(AI)是一个广泛的概念,它涵盖了使计算机能够执行类似人类智能任务的技术和方法。AI的目标是使计算机系统能够理解和分析复杂的信息,从而做出决策、学习、推理、理解语言、识别模式等。AI的应用领域非常广泛,包括语音识别、自然语言处理、计算机视觉、机器人技术、专家系统等。

机器学习:允许计算机无需明确地自动学习的研究领域

机器学习(ML)是人工智能的一个重要分支,它专注于研究和开发能够自动从数据中学习和改进的算法。机器学习算法通过训练数据来寻找规律或模式,并据此对新的、未见过的数据进行预测或分类。机器学习可以分为有监督学习、无监督学习、半监督学习和强化学习等多种类型,每种类型都有其特定的应用场景和优势。

深度学习:也叫深度神经网络,大脑仿生,设计一层一层的神经元模拟万事万物

深度学习(DL)是机器学习的一个子集,它基于神经网络模型,特别是深度神经网络模型。深度学习通过构建多层神经网络来模拟人脑的工作方式,从而实现对复杂数据的理解和分析。

三者的关系

人工智能是一个宏观的概念,机器学习是实现人工智能的一种关键方法,而深度学习则是机器学习的一个重要分支和前沿领域

 学习方式

基于规律的学习:程序员根据经验利用手工的if-else进行预测

基于模型的学习:从数据中自动学出规律

基于模型的学习:比如房价预测

二、机器学习的应用领域和发展史

机器学习的应用领域:

图像识别,无人驾驶,智能翻译,医疗智能翻译,数据挖掘

机器学习的发展史可以追溯到上个世纪五十年代。以下是一些关键的发展阶段和里程碑:

  1. 早期研究:在20世纪50年代和60年代,人工智能和机器学习的概念开始形成。这一时期的研究主要集中在符号逻辑和基于规则的专家系统上。然而,由于当时计算能力的限制,这些系统往往难以处理复杂的问题。
  2. 神经网络的出现:20世纪80年代,神经网络的研究开始兴起。神经网络是一种模拟人脑神经元连接和交互的模型,它具有较强的自学习和自适应能力。尽管当时神经网络的性能有限,但它为后来的深度学习技术奠定了基础。
  3. 统计学习方法的兴起:在90年代和21世纪初,统计学习方法如支持向量机(SVM)、决策树、随机森林等逐渐流行起来。这些方法在解决分类、回归等问题上取得了显著成效,并在许多实际应用中得到了广泛应用。
  4. 深度学习的崛起:自2012年以来,深度学习技术取得了突破性进展。通过构建深度神经网络模型并利用大量数据进行训练,深度学习在图像识别、语音识别、自然语言处理等领域取得了显著成果。特别是2016年AlphaGo战胜围棋世界冠军李世石的事件,更是引发了全球对人工智能和深度学习的关注。

人工智能发展三要素

数据   算法  算力

• CPU:主要适合I\O密集型的任务

• GPU:主要适合计算密集型任务

• TPU:专门针对大型网络训练而设计的一款处理器 

四、机器学习常用术语

在机器学习的领域中,理解并正确应用常用术语是掌握这一技术的基础。以下是对机器学习中的一些关键术语的理解:

  1. 样本(Sample):在机器学习中,样本通常指的是一组数据的实例,这些数据实例包含了描述对象的特征信息。样本是机器学习算法进行学习和预测的基础。例如,在房价预测的任务中,每一个房屋的相关信息(如面积、地理位置、楼层等)就可以视为一个样本。

  2. 特征(Feature):特征是指描述样本属性的变量。在机器学习中,特征是用来训练模型的关键信息。通过提取和选择有效的特征,我们可以帮助模型更好地理解和预测目标变量。在房价预测的例子中,房屋的面积、地理位置等都可以作为特征。

  3. 标签(Label):标签是机器学习任务中需要预测的目标变量。在监督学习中,每个样本通常都对应一个标签,这个标签是已知的,用于指导模型的学习过程。在房价预测的任务中,房价就是我们需要预测的标签。

  4. 训练集(Training Set):训练集是用于训练机器学习模型的数据集。在训练过程中,模型会学习如何从输入的特征中预测出目标标签。通过不断地迭代和优化,模型会逐渐提高预测的准确性。

  5. 测试集(Test Set):测试集用于评估训练好的模型的性能。与训练集不同,测试集中的数据在模型训练过程中是不可见的,因此可以用来检验模型对未知数据的预测能力。通过比较模型在测试集上的预测结果与实际标签的差异,我们可以评估模型的泛化能力。

五、机器学习算法分类

机器学习算法可以根据不同的学习方式和应用场景进行分类。以下是几种主要的机器学习算法分类:

  1. 监督学习(Supervised Learning)
    • 在监督学习中,算法通过训练数据集进行学习,训练数据集中的每个样本都有已知的标签或结果。算法的任务是找出输入和输出之间的映射关系,从而对新的、未见过的数据进行预测。
    • 常见的监督学习算法包括线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林和梯度提升机等。
  2. 无监督学习(Unsupervised Learning)
    • 在无监督学习中,算法从未标记的数据中找出隐藏的结构或模式。由于没有标签或目标变量,无监督学习算法主要关注数据的内在属性和关系。
    • 常见的无监督学习算法包括聚类算法(如K-均值聚类、层次聚类等)、降维算法(如主成分分析PCA、t-SNE等)和关联规则学习等。
  3. 半监督学习(Semi-supervised Learning)
    • 半监督学习是监督学习和无监督学习的结合,它使用部分标记的数据和大量未标记的数据进行训练。这种方法尤其适用于标记数据有限但未标记数据丰富的场景。
    • 半监督学习算法试图利用未标记数据中的结构信息来改进仅使用标记数据时的学习性能。
  4. 强化学习(Reinforcement Learning)
    • 强化学习是一种通过试错来学习的策略。在这种方法中,算法(或代理)通过与环境的交互来学习如何做出最佳决策,以最大化累积奖励。
    • 强化学习在游戏AI、机器人控制等领域有着广泛的应用,例如AlphaGo围棋算法就是强化学习的一个著名案例。

六、机器学习建模流程

1. 获取数据

  • 搜集数据集:根据机器学习任务的需求,搜集相关的数据集。这可以通过公开数据集、网络爬虫、API接口或企业内部数据仓库等途径获得。
  • 数据清洗:去除重复数据、无关数据或错误数据,确保数据的质量和准确性。

2. 数据基本处理

  • 异常值处理:检测并处理数据中的异常值,如通过删除、替换或插值等方法。
  • 缺失值处理:对于数据中的缺失值,可以通过删除含有缺失值的记录、填充缺失值(如均值填充、中位数填充、插值或模型预测等)来处理。
  • 数据变换:可能需要对数据进行标准化、归一化或编码(如独热编码)等操作,以便于后续的特征工程和模型训练。

3. 特征工程

  • 特征提取:从原始数据中提取出有意义的特征,这些特征应能够反映数据的内在规律和模式。
  • 特征转换:对提取出的特征进行必要的转换,如多项式特征、对数转换等,以增强模型的表达能力。
  • 特征选择:通过统计方法、模型选择或领域知识等方式,选择出对模型性能提升最有帮助的特征。

4. 机器学习(模型训练)

  • 选择合适的算法:根据任务类型和数据的特性,选择合适的机器学习算法。例如,对于分类任务可以选择逻辑回归、决策树或随机森林等;对于聚类任务可以选择K-means或层次聚类等。
  • 模型训练:使用处理好的数据和选定的算法进行模型训练。这通常涉及设置模型参数、优化算法和迭代次数等。

5. 模型评估

  • 评估指标:根据任务类型选择合适的评估指标,如准确率、召回率、F1值、AUC-ROC等。
  • 模型调优:根据评估结果对模型进行调优,包括调整模型参数、更换算法或进行进一步的特征工程等。
  • 交叉验证:使用交叉验证方法来评估模型的稳定性和泛化能力,选择最优的模型进行后续的上线服务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/828864.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于Android中的限定符

很多对于Android不了解或是刚接触Android的初学者来说,对于Android开发中出现的例如layout-large或者drawable-xxhdpi这样的文件夹赶到困惑,这这文件夹到底有什么用?什么时候用?这里简单的说一下。 其实,在上面例子中&…

基于OpenCV的人脸签到系统

效果图 目录文件 camerathread.h 功能实现全写在.h里了 class CameraThread : public QThread {Q_OBJECT public:CameraThread(){//打开序号为0的摄像头m_cap.open(0);if (!m_cap.isOpened()) {qDebug() << "Error: Cannot open camera";}//判断是否有文件,人脸…

iframe实现pdf预览,并使用pdf.js修改内嵌标题,解决乱码问题

项目中遇到文件预览功能,并且需要可以打印文件.下插件对于内网来说有点麻烦,正好iframe预览比较简单,且自带下载打印等功能按钮. 问题在于左上方的文件名乱码,网上找了一圈没有看到解决的,要么就是要收费要会员(ztmgs),要么直接说这东西改不了. 使用: 1.引入 PDF.js 库&…

Spring Boot集成Redisson实现延迟队列

项目场景&#xff1a; 在电商、支付等领域&#xff0c;往往会有这样的场景&#xff0c;用户下单后放弃支付了&#xff0c;那这笔订单会在指定的时间段后进行关闭操作&#xff0c;细心的你一定发现了像某宝、某东都有这样的逻辑&#xff0c;而且时间很准确&#xff0c;误差在1s内…

与AI对话:探索最佳国内可用的ChatGPT网站

与AI对话&#xff1a;探索最佳国内可用的ChatGPT网站 &#x1f310; 链接&#xff1a; GPTGod 点击可注册 &#x1f3f7;️ 标签&#xff1a; GPT-4 支持API 支持绘图 Claude &#x1f4dd; 简介&#xff1a;GPTGod 是一个功能全面的平台&#xff0c;提供GPT-4的强大功能&…

JavaEE——Spring Boot + jwt

目录 什么是Spring Boot jwt&#xff1f; 如何实现Spring Boot jwt&#xff1a; 1. 添加依赖 2、创建JWT工具类 3. 定义认证逻辑 4. 添加过滤器 5、 http请求测试 什么是Spring Boot jwt&#xff1f; Spring Boot和JWT&#xff08;JSON Web Token&#xff09;是一对常…

苍穹外卖学习

并不包含全部视频内容&#xff0c;大部分都按照操作文档来手搓代码&#xff0c;资料&#xff0c;代码都上传git。 〇、实际代码 0.1 Result封装 package com.sky.result;import lombok.Data;import java.io.Serializable;/*** 后端统一返回结果* param <T>*/ Data pub…

软考 系统架构设计师系列知识点之软件可靠性基础知识(5)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之软件可靠性基础知识&#xff08;4&#xff09; 所属章节&#xff1a; 第9章. 软件可靠性基础知识 第1节 软件可靠性基本概念 9.1.3 可靠性目标 前文定量分析软件的可靠性时&#xff0c;使用失效强度来表示软件缺陷对…

20232937文兆宇 2023-2024-2 《网络攻防实践》实践七报告

20232937文兆宇 2023-2024-2 《网络攻防实践》实践七报告 1.实践内容 &#xff08;1&#xff09;使用Metasploit进行Linux远程渗透攻击 任务&#xff1a;使用Metasploit渗透测试软件&#xff0c;攻击Linux靶机上的Samba服务Usermap_script安全漏洞&#xff0c;获取目标Linux…

机器学习day3

一、距离度量 1.欧氏距离 2.曼哈顿距离 3.切比雪夫距离 4.闵可夫斯基距离 二、特征与处理 1.数据归一化 数据归一化是一种将数据按比例缩放&#xff0c;使之落入一个小的特定区间的过程。 代码实战 运行结果 2.数据标准化 数据标准化是将数据按照其均值和标准差进行缩放的过…

2024新版计算机网络视频教程65集完整版(视频+配套资料)

今日学计算机网络&#xff0c;众生皆叹难理解。 却见老师神乎其技&#xff0c;网络通畅如云烟。 协议层次纷繁复杂&#xff0c;ARP、IP、TCP、UDP。 路由器交换机相连&#xff0c;数据包穿梭无限。 网络安全重于泰山&#xff0c;防火墙、加密都来添。 恶意攻击时刻存在&#xf…

Visual Studio Code使用

目录 1.python的调试 2.c的运行 方法1&#xff1a; 方法2&#xff1a; 3.c的调试 3.1调试方法一&#xff1a;先生成执行文件&#xff0c;再调试 3.2调试方法二&#xff1a;同时生成执行文件&#xff0c;调试 4.tasks.json 与launch.json文件的参考 4.1C生成执行文件tas…

AI视频教程下载:用ChatGPT和 MERN 堆栈构建 SAAS 项目

这是一个关于 掌握ChatGPT 开发应用的全面课程&#xff0c;它将带领你进入 AI 驱动的 SAAS 项目的沉浸式世界。该课程旨在使你具备使用动态的 MERN 堆栈和无缝的 Stripe 集成来构建强大的 SAAS 平台所需的技能。 你将探索打造智能解决方案的艺术&#xff0c;深入研究 ChatGPT 的…

使用R语言进行简单的主成分分析(PCA)

主成分分析&#xff08;PCA&#xff09;是一种广泛使用的数据降维技术&#xff0c;它可以帮助我们识别数据中最重要的特征并简化复杂度&#xff0c;同时尽量保留原始数据的关键信息。在这篇文章中&#xff0c;我们将通过一个具体的例子&#xff0c;使用R语言实现PCA&#xff0c…

主成分分析(PCA):揭秘数据的隐藏结构

在数据分析的世界里&#xff0c;我们经常面临着处理高维数据的挑战。随着维度的增加&#xff0c;数据处理、可视化以及解释的难度也随之增加&#xff0c;这就是所谓的“维度的诅咒”。主成分分析&#xff08;PCA&#xff09;是一种强大的统计工具&#xff0c;用于减少数据的维度…

Maven的仓库、周期和插件

一、简介 随着各公司的Java项目入库方式由老的Ant改为Maven后&#xff0c;相信大家对Maven已经有了个基本的熟悉。但是在实际的使用、入库过程中&#xff0c;笔者发现挺多人对Maven的一些基本知识还缺乏了解&#xff0c;因此在此处跟大家简单地聊下Maven的相关内容&#xff0c…

基于STM32单片机的天然气与温湿度检测报警系统设计

基于STM32单片机的天然气与温湿度检测报警系统设计 一、引言 随着科技的发展和安全生产意识的提高&#xff0c;对于地下矿井等封闭环境中的天然气泄漏和温湿度变化的监控变得尤为重要。本文设计了一种基于STM32单片机的天然气与温湿度检测报警系统&#xff0c;旨在实时监控环…

OpenCV实现霍夫变换

返回:OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 上一篇&#xff1a;OpenCV 如何实现边缘检测器 下一篇 :OpenCV 实现霍夫圆变换 目标 在本教程中&#xff0c;您将学习如何&#xff1a; 使用 OpenCV 函数 HoughLines()和 HoughLinesP()检测图像中的线条。…

Error opening file a bytes-like object is required,not ‘NoneType‘

错误显示&#xff0c;打开的是一个无效路径的文件 查看json文件内容&#xff0c;索引的路径与json文件保存的路径不同 方法&#xff1a;使用python脚本统一修改json文件路径 import json import os import argparse import cv2 from tqdm import tqdm import numpy as np impo…

python爬虫学习------scrapy第二部分(第三十天)

&#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; &#x1f388;&#x1f388;所属专栏&#xff1a;python爬虫学习&#x1f388;&#x1f388; ✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天…