摘要
本文使用DOConv卷积,替换YoloV8的常规卷积,轻量高效,即插即用!改进方法非常简单。
DO-Conv(Depthwise Over-parameterized Convolutional Layer)是一种深度过参数化的卷积层,用于提高卷积神经网络(CNN)的性能。它的核心思想是在训练阶段使用额外的深度卷积来增强卷积层,其中每个输入通道与不同的二维核进行卷积。这两个卷积的组合构成了一个过度参数化,因为它增加了可学习的参数,而结果的线性操作可以用单个卷积层来表示。在推理阶段,DO-Conv可以融合到常规卷积层中,使得计算量与常规卷积层的计算量完全相同。
DO-Conv可以作为一种即插即用的模块,用于替代CNN中的常规卷积层,以提高在各种计算机视觉任务(如图像分类、语义分割和对象检测)上的性能。通过实验证明,使用DO-Conv不仅可以加速网络的训练过程,还能在多种计算机视觉任务中取得比使用传统卷积层更好的结果。
论文链接:https://arxiv.org/pdf/2006.12030.pdf
代码
# coding=utf-8
import math
import torch