Pytorch从零开始实战04

Pytorch从零开始实战——猴痘病识别

本系列来源于365天深度学习训练营

原作者K同学

文章目录

  • Pytorch从零开始实战——猴痘病识别
    • 环境准备
    • 数据集
    • 模型选择
    • 模型训练
    • 数据可视化
    • 其他模型
    • 图片预测

环境准备

本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是学习模型的保存和预测单张图片的结果。
第一步,导入常用包。

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torch.nn.functional as F
import torchvision.transforms as transforms
import random
import time
import numpy as np
import pandas as pd
import datetime
import gc
import pathlib
import os
import PIL
os.environ['KMP_DUPLICATE_LIB_OK']='True'  # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True  # 用于加速GPU运算的代码

创建设备对象

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

设置随机数种子

torch.manual_seed(428)
torch.cuda.manual_seed(428)
torch.cuda.manual_seed_all(428)
random.seed(428)
np.random.seed(428)

数据集

本次实验使用猴痘病图片数据集,共2142张图片,分别为有猴痘病的图片和没有猴痘病的图片,
两种类别的图片分别存在两个文件夹中。

data_dir = './data/monkeydata'
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))
classNames = [str(path).split("/")[2] for path in data_paths]
classNames # ['Monkeypox', 'Others']

对数据通过dataset读取,并且将文件夹名设置为标签。

total_datadir = './data/monkeydata'
train_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
])
total_data = torchvision.datasets.ImageFolder(total_datadir, transform=train_transforms)
total_data

在这里插入图片描述
我们可以查看所有标签

total_data.class_to_idx # {'Monkeypox': 0, 'Others': 1}

接下来划分数据集,以8比2划分训练集和测试集

# 划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_ds, test_ds = torch.utils.data.random_split(total_data, [train_size, test_size])
len(train_ds), len(test_ds)

随机查看5张图片

def plotsample(data):fig, axs = plt.subplots(1, 5, figsize=(10, 10)) #建立子图for i in range(5):num = random.randint(0, len(data) - 1) #首先选取随机数,随机选取五次#抽取数据中对应的图像对象,make_grid函数可将任意格式的图像的通道数升为3,而不改变图像原始的数据#而展示图像用的imshow函数最常见的输入格式也是3通道npimg = torchvision.utils.make_grid(data[num][0]).numpy()nplabel = data[num][1] #提取标签 #将图像由(3, weight, height)转化为(weight, height, 3),并放入imshow函数中读取axs[i].imshow(np.transpose(npimg, (1, 2, 0))) axs[i].set_title(nplabel) #给每个子图加上标签axs[i].axis("off") #消除每个子图的坐标轴plotsample(train_ds)

在这里插入图片描述
使用DataLoader划分批次和打乱数据集

batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds, batch_size=batch_size, shuffle=True)
test_dl = torch.utils.data.DataLoader(test_ds, batch_size=batch_size, shuffle=True)
for X, y in test_dl:print(X.shape) # 32, 3, 224, 224print(y) # 1, 0, 1, 1, 1, 1, 0....break
print(len(train_dl.dataset) + len(test_dl.dataset)) # 2142

模型选择

本次实验第一次选择的是一个简单的卷积神经网络,经过卷积+卷积+池化+卷积+卷积+池化+线性层,并中间进行数据归一化处理。

class Model(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(3, 12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(12, 12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2)self.conv3 = nn.Conv2d(12, 24, kernel_size=5, stride=1, padding=0)self.bn3 = nn.BatchNorm2d(24)self.conv4 = nn.Conv2d(24, 24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24)self.fc1 = nn.Linear(24 * 50 * 50, len(classNames))def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))x = F.relu(self.bn2(self.conv2(x)))  x = self.pool(x)x = F.relu(self.bn3(self.conv3(x)))     x = F.relu(self.bn4(self.conv4(x))) x = self.pool(x)  x = x.view(-1, 24 * 50 * 50)x = self.fc1(x)return x;

使用summary查看模型

from torchsummary import summary
# 将模型转移到GPU中
model = Model().to(device)
summary(model, input_size=(3, 224, 224))

模型训练

训练函数

def train(dataloader, model, loss_fn, opt):size = len(dataloader.dataset)num_batches = len(dataloader)train_acc, train_loss = 0, 0for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)opt.zero_grad()loss.backward()opt.step()train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

测试函数

def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)test_acc, test_loss = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

定义一些超参数,经实验,将学习率设置为0.01效果最好。

loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.01
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)

开始训练,epochs设置为20,并且将训练集的最优结果保存。

import time
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []T1 = time.time()best_acc = 0
PATH = './my_model.pth'for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval() # 确保模型不会进行训练操作epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)if epoch_test_acc > best_acc:best_acc = epoch_test_acctorch.save(model.state_dict(), PATH)print("model save")train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"% (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print("Done")
T2 = time.time()
print('程序运行时间:%s毫秒' % ((T2 - T1)*1000))

可以看到,最好的时候,测试集准确率达到百分之91.8
在这里插入图片描述

数据可视化

使用matplotlib进行数据可视化。

import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

其他模型

本次实验也使用了ResNet模型,虽然参数量较大,但训练效果较好
定义模型

class Model(nn.Module):def __init__(self):super().__init__()# 创建预训练的ResNet-18模型self.resnet = torchvision.models.resnet18(pretrained=True)# 将ResNet的最后一层(全连接层)替换为适合二分类问题的新全连接层self.resnet.fc = nn.Linear(self.resnet.fc.in_features, len(classes))def forward(self, x):return self.resnet(x)from torchsummary import summary
# 将模型转移到GPU中
model = Model().to(device)

经实验,把学习率设置为0.001,效果较好

import time
epochs = 50
train_loss = []
train_acc = []
test_loss = []
test_acc = []loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.001
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)T1 = time.time()best_acc = 0
PATH = './my_model.pth'for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval() # 确保模型不会进行训练操作epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)if epoch_test_acc > best_acc:best_acc = epoch_test_acctorch.save(model.state_dict(), PATH)print("model save")train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"% (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print("Done")
T2 = time.time()
print('程序运行时间:%s毫秒' % ((T2 - T1)*1000))

最终在测试集的准确率可达到97.2%。
在这里插入图片描述
可视化训练过程

import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

图片预测

img_path:要进行预测的图像文件的路径。
model:用于进行图像分类预测的深度学习模型。
transform:用于对图像进行预处理的数据转换函数。
classes:包含类别标签的列表,用于将模型的输出索引映射回类别标签。
大致意思是图像与训练时的输入数据格式相匹配,模型接受批量输入,因此我们需要在维度上添加一个批次维度,从而进行预测

classes = list(total_data.class_to_idx)
def predict_img(img_path, model, transform, classes):test_img = Image.open(img_path).convert('RGB')test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_, pred = torch.max(output, 1) # 在张量的第一个维度上取最大值操作pred_class = classes[pred]print(f'预测结果是:{pred_class}')

开始预测

predict_img(img_path='./data/monkeydata/Monkeypox/M01_01_00.jpg', model=model, transform=train_transforms, classes=classes)
# 预测结果是:Monkeypox

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/82818.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端-layui动态渲染表格行列与复杂表头合并

说在前面&#xff1a; 最近一直在用layui处理表格 写的有些代码感觉还挺有用的&#xff0c;顺便记录下来方便以后查看使用&#xff1b; HTML处代码 拿到id 渲染位置表格 <div class"layui-table-body salaryTable"><table class"layui-table" i…

GE WES5120 5120-1506 自动化控制模块

GE WES5120 5120-1506 是一种自动化控制模块&#xff0c;通常用于工业自动化和控制系统中&#xff0c;用于监测和控制各种工业过程。这种类型的自动化控制模块在多个应用领域都有广泛的用途&#xff0c;包括但不限于以下几个领域&#xff1a; 制造业&#xff1a; WES5120 5120-…

Nginx配置负载均衡时访问地址无法生效

场景还原 今天有小伙伴练习Nginx配置负载均衡时总是无法使用配置好的网址访问 配置文件信详情 http {# 负载均衡 后端IP地址和端口 webservers 策略 轮询upstream webservers{server 192.168.1.100:8080 weight90; server 127.0.0.1:8080 weight10; }server{listen 80;ser…

Lostash同步Mysql数据到ElasticSearch(二)logstash脚本配置和常见坑点

1. logstash脚本编写&#xff08;采用单文件对应单表实例&#xff09; 新建脚本文件夹 cd /usr/local/logstash mkdir sql & cd sql vim 表名称.conf #如: znyw_data_gkb_logstash.conf 建立文件夹&#xff0c;保存资源文件更新Id mkdir -p /data/logstash/data/last_r…

【FAQ】安防监控系统/视频云存储/监控平台EasyCVR服务器解释器出现变更该如何修改?

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…

【数据结构】图的基本概念,图的存储结构(邻接矩阵;邻接表;十字链表;邻接多重表)

欢~迎~光~临~^_^ 目录 1、图的基本概念 2、图的存储结构 2.1邻接矩阵 2.2邻接表 2.3十字链表 2.4邻接多重表 2.5图的四种存储结构的对比 1、图的基本概念 图是由一组节点&#xff08;通常称为顶点&#xff09;和一组连接这些节点的边&#xff08;通常称为边&#xff0…

密码学概论

1.密码学的三大历史阶段&#xff1a; 第一阶段 古典密码学 依赖设备&#xff0c;主要特点 数据安全基于算法的保密&#xff0c;算法不公开&#xff0c;只要破译算法 密文就会被破解&#xff0c; 在1883年第一次提出 加密算法应该基于算法公开 不影响密文和秘钥的安全&#xff…

添加一个仅管理员可见的页面

例如我新加一个页面 申请一个路由 《插播》 前端是如何知道我们是管理员的呢&#xff0c;ant-design框架会帮我们存到InitialState里&#xff0c;做为全局变量 在access.ts里我们获取到了用户是否为管理员 &#xff08;用户存在且为管理员&#xff09; 框架为我们打通了个路由…

JADE盲分离算法仿真

JADE算法原理 JADE 算法首先通过去均值预白化等预处理过程得到解相关的混合信号&#xff0c;预处理后的信号构建的协方差矩阵变为单位阵&#xff0c;为后续的联合对角化奠定基础&#xff1b;其次&#xff0c;通过建立四阶累积量矩阵&#xff0c;利用高阶累积量的统计独立性等性…

uniapp获取一周日期和星期

UniApp可以使用JavaScript中的Date对象来获取当前日期和星期几。以下是一个示例代码&#xff0c;可以获取当前日期和星期几&#xff0c;并输出在一周内的每天早上和晚上&#xff1a; // 获取当前日期和星期 let date new Date(); let weekdays ["Sunday", "M…

Android Aidl跨进程通讯(四)--接口回调,服务端向客户端发送数据

学更好的别人&#xff0c; 做更好的自己。 ——《微卡智享》 本文长度为3325字&#xff0c;预计阅读9分钟 前言 前几篇介绍了AIDL通讯的基础&#xff0c;进阶和异常捕获&#xff0c;本篇就来看看服务端怎么向客户端来实现发送消息。 实现服务端往客户端发送消息&#xff0c;主要…

java版Spring Cloud+Mybatis+Oauth2+分布式+微服务+实现工程管理系统

鸿鹄工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离构建工程项目管理系统 1. 项目背景 一、随着公司的快速发展&#xff0c;企业人员和经营规模不断壮大。为了提高工程管理效率、减轻劳动强度、提高信息处理速度和准确性&#xff0c;公司对内部工程管…

爬虫框架Scrapy学习笔记-1

前言 在现代互联网时代&#xff0c;网页数据获取和处理已经成为了重要的技能之一。无论是为了获取信息、做市场研究&#xff0c;还是进行数据分析&#xff0c;掌握网页爬取和数据处理技术都是非常有用的。本文将介绍从网页加载到数据存储的完整过程&#xff0c;包括网络请求、…

(手撕)数据结构--->堆

文章内容 目录 一&#xff1a;堆的相关概念与结构 二&#xff1a;堆的代码实现与重要接口代码讲解 让我们一起来学习:一种特殊的数据结构吧&#xff01;&#xff01;&#xff01;&#xff01; 一&#xff1a;堆的相关概念与结构 在前面我们已经简单的学习过了二叉树的链式存储结…

Linux Day17 生产者消费者

一、生产者消费者问题概述 生产者 / 消费者问题&#xff0c;也被称作有限缓冲问题。两个或者更多的线程共享同一个缓冲 区&#xff0c;其中一个或多个线程作为 “ 生产者 ” 会不断地向缓冲区中添加数据&#xff0c;另一个或者多个线程作为 “ 消费者 ” 从缓冲区中取走数据。…

【MySQL系列】- MySQL自动备份详解

【MySQL系列】- MySQL自动备份详解 文章目录 【MySQL系列】- MySQL自动备份详解一、需求背景二、Windows mysql自动备份方法2.1 复制date文件夹备份实验备份环境创建bat直接备份脚本 2 .2 mysqldump备份成sql文件创建mysqldump备份脚本 2 .3 利用WinRAR对MySQL数据库进行定时备…

【每日一题】154. 寻找旋转排序数组中的最小值 II

154. 寻找旋转排序数组中的最小值 II - 力扣&#xff08;LeetCode&#xff09; 已知一个长度为 n 的数组&#xff0c;预先按照升序排列&#xff0c;经由 1 到 n 次 旋转 后&#xff0c;得到输入数组。例如&#xff0c;原数组 nums [0,1,4,4,5,6,7] 在变化后可能得到&#xff1…

基于SSM的智慧城市实验室主页系统的设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用Vue技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

linux学习实操计划0103-安装软件

本系列内容全部给基于Ubuntu操作系统。 系统版本&#xff1a;#32~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Aug 18 10:40:13 UTC 1 安装deb格式软件 Debian包是Unixar的标准归档&#xff0c;将包文件信息以及包内容&#xff0c;经过gzip和tar打包而成。 处理这些包的经典程序是…

git基本手册

Git and GitHub for Beginners Tutorial - YouTube Kevin Stratvert git config --global user.name “xxx” git config --global user.email xxxxx.com 设置默认分支 git config --global init.default branch main git config -h查看帮助 详细帮助 git help config 清除 cl…