深度学习架构(CNN、RNN、GAN、Transformers、编码器-解码器架构)的友好介绍。

一、说明

        本博客旨在对涉及卷积神经网络 (CNN)、递归神经网络 (RNN)、生成对抗网络 (GAN)、转换器和编码器-解码器架构的深度学习架构进行友好介绍。让我们开始吧!!

二、卷积神经网络 (CNN)

        卷积神经网络 (CNN) 是一种人工神经网络,旨在处理和分析具有网格状拓扑结构的数据,例如图像和视频。将 CNN 想象成一个多层过滤器,它处理图像以提取有意义的特征并做出预测。

        想象一下,你有一张手写数字的照片,你希望计算机能够识别这个数字。CNN 的工作原理是在图像上应用一系列滤镜,逐渐提取越来越复杂的特征。第一个过滤器检测简单的特征,如边缘和线条,而后面的过滤器检测更复杂的图案,如形状和数字。

        卷积神经网络

        CNN 的层可分为三种主要类型:卷积层、池化层和全连接层。

  1. 卷积层:这些层将过滤器(也称为内核)应用于图像。每个滤镜在图像上滑动,计算滤镜和它所覆盖的像素之间的点积。此过程将生成一个新的特征图,该特征图突出显示了图像中的特定模式。使用不同的滤镜多次重复该过程,创建一组捕获图像不同方面的特征图。
  2. 池化图层:池化图层对特征图执行下采样操作,在保留重要要素的同时减小数据的空间维度。这有助于降低计算复杂性并防止过拟合。最常见的池化类型是最大池化,它从一小块像素邻域中选择最大值。
  3. 全连接层:这些层类似于传统神经网络中的层。它们将一层中的每个神经元连接到下一层中的每个神经元。卷积层和池化层的输出被展平化并通过一个或多个完全连接的层,允许网络做出最终预测,例如识别图像中的数字。

        总之,CNN 是一种神经网络,旨在处理类似网格的数据,例如图像。它的工作原理是将一系列过滤器或内核应用于图像,逐渐提取更复杂的特征。然后,输出通过池化层传递,以减小空间维度并防止过拟合。最后,输出通过全连接层进行最终预测。

三、递归神经网络 (RNN)

        递归神经网络 (RNN) 是一种人工神经网络,旨在处理顺序数据,例如时间序列、语音和自然语言。将RNN想象成一条传送带,一次处理一个元素的信息,使其能够“记住”来自先前元素的信息,从而对下一个元素进行预测。

        想象一下,你有一个单词序列,你希望计算机生成序列中的下一个单词。RNN 的工作原理是处理序列中的每个单词,一次一个,并使用来自前一个单词的信息来预测下一个单词。

        RNN 的关键组件是循环连接,它允许信息从一个时间步流向下一个时间步。递归连接是神经元内的一种连接,它“记住”了前一个时间步的信息。

RNN系列

RNN 可分为三个主要部分:输入层、循环层和输出层。

  1. 输入层:输入层在每个时间步长接收信息,例如序列中的一个单词。
  2. 递归层:递归层处理来自输入层的信息,使用递归连接来“记住”以前时间步长中的信息。循环层包含一组神经元,每个神经元都与自身建立循环连接,并在当前时间步长与输入建立连接。
  3. 输出层:输出层根据循环层处理的信息生成预测。在生成序列中的下一个单词的情况下,输出层将预测最有可能跟随序列中前一个单词的单词。

        总之,RNN 是一种旨在处理顺序数据的神经网络。它的工作原理是一次处理一个元素的信息,使用循环连接来“记住”来自先前元素的信息。递归层允许网络处理整个序列,使其非常适合语言翻译、语音识别和时间序列预测等任务。

四、生成对抗网络 (GAN)

        生成对抗网络 (GAN) 是一种深度学习架构,它使用两个神经网络(一个生成器和一个鉴别器)来创建新的、真实的数据。将 GAN 想象成两个对立的艺术家,一个创作假艺术,另一个试图区分真假。

        GAN 的目标是在各个领域(例如图像、音频和文本)生成高质量、逼真的数据样本。生成器网络创建新样本,而鉴别器网络评估生成样本的真实性。这两个网络以对抗的方式同时进行训练,生成器试图产生更真实的样本,而鉴别器则在检测假货方面变得更好。

赣语

GAN的两个主要组成部分是:

  1. 发电机: 发电机网络负责创建新样本。它以随机噪声向量作为输入并生成输出样本,例如图像或句子。生成器经过训练,通过最小化损失函数来生成更真实的样本,该损失函数测量生成的样本与真实数据之间的差异。
  2. 鉴别器:鉴别器网络评估生成样本的真实性。它以样本作为输入并输出一个概率,指示样本是真的还是假的。鉴别器经过训练,通过最大化损失函数来区分真实样本和虚假样本,该损失函数测量真实样本和生成样本之间的概率差异。

        GAN的对抗性源于生成器和鉴别器之间的竞争。生成器试图生成更真实的样本来欺骗鉴别器,而鉴别器则试图提高其区分真实样本和假样本的能力。这个过程一直持续到生成器生成高质量、逼真的数据,这些数据不容易与真实数据区分开来。

        总之,GAN是一种深度学习架构,它使用两个神经网络(一个生成器和一个判别器)来创建新的、真实的数据。生成器创建新样本,鉴别器评估其真实性。这两个网络以对抗方式进行训练,生成器产生更真实的样本,鉴别器提高其检测假货的能力。GAN 在各个领域都有应用,例如图像和视频生成、音乐合成和文本到图像合成。

五、变形金刚

        Transformer 是一种神经网络架构,广泛用于自然语言处理 (NLP) 任务,例如翻译、文本分类和问答。它们在 2017 年由 Vaswani 等人发表的开创性论文“Attention Is All You Need”中介绍。

        将转换器想象成一种复杂的语言模型,它通过将文本分解成更小的部分并分析它们之间的关系来处理文本。然后,该模型可以对各种查询生成连贯且流畅的响应。

        变压器由几个重复模块组成,称为层。每层包含两个主要组件:

  1. 自注意力机制:自注意力机制允许模型分析输入文本不同部分之间的关系。它的工作原理是为输入序列中的每个单词分配一个权重,表明其与当前上下文的相关性。这使得模型能够专注于重要的单词,而淡化不太相关的单词的重要性。
  2. 前馈神经网络:前馈神经网络是处理自注意力机制输出的多层感知器。他们负责学习输入文本中单词之间的复杂关系。

        变压器

        转换器的关键创新是使用自注意力机制,它允许模型有效地处理长序列的文本,而无需昂贵的循环或卷积操作。这使得转换器在计算上高效且适用于各种 NLP 任务。

        简单来说,转换器是一种强大的神经网络架构,专为自然语言处理任务而设计。他们通过将文本分解成更小的部分并通过自我注意力机制分析它们之间的关系来处理文本。这允许模型对各种查询生成连贯且流畅的响应。

六、编码器-解码器体系结构

        编码器-解码器架构在自然语言处理 (NLP) 任务中很受欢迎。它们通常用于序列到序列问题,例如机器翻译,其目标是将一种语言(源)的输入文本转换为另一种语言(目标)的相应文本。

        想象一下,编码器-解码器架构就像一个翻译器,他听一个用外语说话的人,同时将其翻译成听众的母语。

        编码器-解码器架构

        该体系结构由两个主要组件组成:

  1. 编码器:编码器获取输入序列(源文本)并按顺序进行处理,生成紧凑的表示形式,通常称为“上下文向量”或“上下文嵌入”。此表示形式汇总了输入序列,并包含有关其语法、语义和上下文的信息。编码器可以是递归神经网络 (RNN) 或转换器,具体取决于特定任务和实现。
  2. 译码器:解码器获取编码器生成的上下文向量,并一次生成一个元素的输出序列(目标文本)。解码器通常是循环神经网络或转换器,类似于编码器。它通过根据前一个单词和上下文向量中包含的信息预测目标序列中的下一个单词来生成输出序列。

        在训练过程中,解码器接收真正的目标序列,其目标是预测序列中的下一个单词。在推理期间(当模型生成响应时),解码器接收到该点之前生成的文本,并使用它来预测下一个单词。

        总之,编码器-解码器架构是自然语言处理任务中的一种流行方法,特别是对于机器翻译等序列到序列问题。该体系结构由一个编码器和一个解码器组成,前者处理输入序列并生成紧凑的表示,后者基于此表示生成输出序列。这允许模型将一种语言的输入文本转换为另一种语言的相应文本。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/825558.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【观察】容器化部署“再简化”,云原生体验“再升级”

自2013年云原生概念被提出以来,云原生技术和架构在过去十多年得到了迅速的发展,并对数字基础设施、应用架构和应用构建模式带来了深刻的变革。根据IDC预测,到2024年,新增的生产级云原生应用在新应用的占比将从2020年的10%增加到60…

Java学习-详述main方法、可变参数、数组的工具类、二维数组

详述main方法 【1】main方法:程序的入口,在同一个类中,如果有多个方法,那么虚拟机就会识别main方法,从这个方法作为程序的入口 【2】main方法格式严格要求: public static void main(String[] args){} p…

线性代数---行列式的性质

1. 行列式的行与列(按原顺序)互换

SpringCloud +UniApp技术开发saas模式的智慧工地云平台源码,支持可视化大屏端、手机端、平板端、PC端

基于微服务架构JavaSpring Cloud UniApp MySql技术开发saas模式的一套智慧工地云平台源码,支持多端展示:可视化大屏端、手机端、平板端、PC端。 智慧工地平台支持项目级、公司级、集团级多级权限划分,可根据企业的组织架构进行项目权限、功能…

编程入门(四)【计算机网络基础(由一根网线连接两个电脑开始)】

读者大大们好呀!!!☀️☀️☀️ 🔥 欢迎来到我的博客 👀期待大大的关注哦❗️❗️❗️ 🚀欢迎收看我的主页文章➡️寻至善的主页 文章目录 前言两个电脑如何互连呢?集线器、交换机与路由器总结 前言 当你有…

【opencv】dnn示例-speech_recognition.cpp 使用DNN模块结合音频信号处理技术实现的英文语音识别...

模型下载地址: https://drive.google.com/drive/folders/1wLtxyao4ItAg8tt4Sb63zt6qXzhcQoR6 终端输出:(audio6.mp3 、audio10.mp3) [ERROR:00.002] global cap_ffmpeg_impl.hpp:1112 open VIDEOIO/FFMPEG: unsupported parameter…

华为手机p70即将上市,国内手机市场或迎来新局面?

4月15日,华为官宣手机品牌全新升级,p系列品牌升级为Pura。华为P70系列手机预计将于2024年第一季度末发布,而网友也纷纷表示期待p70在拍照、性能上的全新突破。 网友们对华为P70系列的热情高涨,也印证了国内高端手机市场的潜力巨大…

MySql安装(Linux)

一、清除原来的mysql环境 在前期建议使用root用户来进行操作,使用 su -来切换成root用户,但是如果老是提示认证失败,那么有可能我们的root密码并没有被设置, 我们可以先设置root的密码 sudo passwd root 然后就可以切换了。 …

Mac 利用Homebrew安装JDK

一、安装JDK17 1.安装openjdk17 2.把homebrew安装的openjdk17软链接到系统目录: brew install openjdk17 sudo ln -sfn $(brew --prefix)/opt/openjdk17/libexec/openjdk.jdk /Library/Java/JavaVirtualMachines/openjdk-17.jdk 一、检查是否安装成功 在Termina…

深入解析Apache Hadoop YARN:工作原理与核心组件

什么是YARN? YARN(Yet Another Resource Negotiator)是Apache Hadoop生态系统中的一个重要组件,用于资源管理和作业调度。它是Hadoop 2.x版本中的一个关键特性,取代了旧版本中的JobTracker和TaskTracker。YARN的设计目…

蚂蚁云科技集团应用研究院院长李亚锋先生受邀为第十三届中国PMO大会演讲嘉宾

全国PMO专业人士年度盛会 蚂蚁云科技集团应用研究院院长李亚锋先生受邀为PMO评论主办的2024第十三届中国PMO大会演讲嘉宾,演讲议题为“探索AI技术对项目管理发展的影响”。大会将于5月25-26日在北京举办,敬请关注! 议题简要: 19…

CSS的语法规则——基础选择器

元素&#xff1a; 用法&#xff1a; 标签名&#xff1a;{style的内容} 特点&#xff1a; 全局性&#xff0c;使用后&#xff0c;所有的相同标签都是同一种样式。 举例&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UT…

双目人体姿态匹配 | 基于双目视觉的人体姿态匹配+识别算法实现

项目应用场景 面向双目立体视觉的人体姿态匹配场景&#xff0c;项目采用 Visual Studio C 开发&#xff0c;具有人体姿态匹配 人体姿态识别能力。 项目效果 项目细节 > 具体参见项目 README.md项目获取 https://download.csdn.net/download/weixin_42405819/89113399

怎么找平台?伦敦金交易平台查询

在过去的一个星期里&#xff0c;伦敦金价格再创辉煌&#xff0c;一举突破2400大关&#xff0c;并且将历史新高刷新至2431。虽然随后金价出现较大幅度的下跌&#xff0c;但对多数投资者而言&#xff0c;这不是下跌而是回调。回调之后&#xff0c;伦敦金的涨势将继续。既然有这么…

neo4j使用详解(终章、neo4j的java driver使用模板及工具类——<可用于生产>)

Neo4j系列导航: neo4j安装及简单实践 cypher语法基础 cypher插入语法 cypher插入语法 cypher查询语法 cypher通用语法 cypher函数语法 neo4j索引及调优 neo4j java Driver等更多 1. 简介 本文主要是java使用neo4j driver操作neo4j的模板项目及非常有用的工具类,主要包括: 图…

我三战华东师范大学的同桌真的很牛

标题党一下&#xff0c;其实是我的一个关系很好的高中同桌死磕华东师范大学三年&#xff0c;最终第二名上岸的故事。 其实我们是同一届的&#xff0c;我为了早点走选择了个排名还行的双非院校就走了&#xff0c;而我这个同桌相当有毅力&#xff0c;他能坚持这么久我其实很佩服&…

微信小程序开发一(常用的标签)

去微信公众平台注册账号确定怎么操作去网上找找 网址&#xff1a;微信公众平台 (qq.com)https://mp.weixin.qq.com/https://mp.weixin.qq.com/ 微信开放文档中找到工具栏下载微信开发者工具 网址&#xff1a;微信开发者工具&#xff08;稳定版 Stable Build&#xff09;下载地…

JavaWeb开发02-MYSQL-DDL-DML-DQL-多表设计-多表查询-事务-索引

一、MySQL概述 通过SQL语句可以操作数据库 关系型数据库&#xff1a; 只要是关系型数据库就可以用SQL语句这一统一标准进行操作数据库 1.MYSQL数据模型 客户端通过SQL语句交给了数据库管理系统DBMS&#xff0c;进行相应操作&#xff0c;创建一个一个数据库&#xff0c;体现为一…

如何理解信创产品?成为信创产品?

信创产品是指运用信息技术手段创造的产品&#xff0c;它是数据安全、网络安全的基础&#xff0c;也是新基建的重要组成部分。信创产品包括了IT基础设施如CPU芯片、服务器、存储、交换机、路由器、各种云和相关服务内容&#xff1b;基础软件如数据库、操作系统、中间件&#xff…

JRT在线初始化完善

之前实现的在线初始化留了个尾巴&#xff0c;那就是环境下载页构造zip包的时候没修改JRTBrowser的连接串地址为当前网站&#xff0c;这样就要求网站部署好之后给用户下载之前有人要把服务器的浏览器地址配置好。这样就增加一个运维工作&#xff0c;如果忘了或者不知道的人就会导…