ArtCoder——通过风格转换生成多元化艺术风格二维码

简介

ArtCoder能够从原始图像(内容)、目标图像(风格)以及想要嵌入的信息中,生成具有艺术风格的二维码。这一过程类似于通常的图像风格转换,但特别针对二维码的特点进行了优化和调整。

通过这种方法,不仅能够保持二维码的功能性和可读性,同时还能够使其具有独特的视觉效果和艺术表现力。这样的二维码不仅能够提供信息的快速识别和传递,还能够作为一种视觉元素,增强产品的吸引力和品牌的识别度。


论文地址:https://arxiv.org/abs/2011.07815

算法架构

模型


所提出的方法被建模为一个函数 P s i Psi Psi,它从风格图像 I s I_s Is、内容图像 I c I_c Ic和信息M中生成一个QR码 Q = P s i ( I s , I c , M ) Q = Psi(I_s, I_c, M) Q=Psi(Is,Ic,M)。在这个模型中,生成的QR码Q的目标函数(损失函数)Ltotal由以下方程定义,它结合了三个不同的损失函数:

L t o t a l = l a m b d a 1 L s t y l e ( I s , Q ) + l a m b d a 2 L c o m t e n t ( I c , Q ) + l a m b d a 3 L c o d e ( M , Q ) L_{t o t a l}=l a m b d a_{1}L_{s t y l e}(I_{s},Q)+l a m b d a_{2}L_{c o m t e n t}(I_{c},Q)+l a m b d a_{3}L_{c o d e}(M,Q) Ltotal=lambda1Lstyle(Is,Q)+lambda2Lcomtent(Ic,Q)+lambda3Lcode(M,Q)

这里的 l a m b d a 1 , λ 2 , λ 3 l a m b d a_{1},\lambda_{2},\lambda_{3} lambda1,λ2,λ3是权重参数,用于表示风格损失、内容损失和代码损失在总损失函数中的相对重要性。

  • 风格损失Lstyle用于确保生成的QR码Q保留了风格图像Is的视觉风格。这通常通过比较风格图像和生成的QR码之间的风格特征来实现,例如使用预训练的神经网络(如VGG网络)提取特征并计算它们之间的差异。

  • 内容损失Lcontent用于保证生成的QR码Q与内容图像Ic在视觉上保持一致。这通常涉及到计算两个图像之间的像素级差异,以确保内容图像的主要视觉元素被保留在最终的QR码中。

  • 代码损失Lcode则专注于确保生成的QR码Q正确地编码了信息M。这通常通过验证解码后的QR码是否能够准确还原出原始信息来实现。

通过优化这个目标函数,我们可以生成既具有艺术性又能够准确传递信息的QR码。这种方法不仅提升了二维码的艺术价值,还拓宽了其在不同领域的应用潜力,如品牌营销、个人表达、艺术创作等。通过调整 l a m b d a 1 , λ 2 , λ 3 l a m b d a_{1},\lambda_{2},\lambda_{3} lambda1,λ2,λ3的值,可以根据具体需求调整风格、内容和信息的相对重要性,从而生成满足特定要求的QR码。

风格损失Lstyle和内容损失Lcontent

样式损失Lstyle和内容损失Lcontent用于确保生成的QR码保留其样式和内容。具体来说,根据现有的关于风格转换的研究(1,2),它们由以下公式定义

L s t y l e ( I s , Q ) = 1 C s H s W s ∣ ∣ G [ f s ( I s ) ] − G [ f s ( Q ) ] ∣ ∣ 2 2 {\cal L}_{s t y l e}(I_{s},Q)=\frac{1}{C_{s}H_{s}W_{s}}||G[f_{s}(I_{s})]-G[f_{s}(Q)]||_{2}^{2} Lstyle(Is,Q)=CsHsWs1∣∣G[fs(Is)]G[fs(Q)]22

L c o n t e n t ( I c , Q ) = 1 C s H s W s ∣ ∣ f c ( I c ) ∣ − f c ( Q ) ∣ ∣ 2 2 {\cal L}_{c o n t e n t}(I_{c},Q)=\frac{1}{C_{s}H_{s}W_{s}}||f_{c}(I_{c})|-f_{c}(Q)||_{2}^{2} Lcontent(Ic,Q)=CsHsWs1∣∣fc(Ic)fc(Q)22

其中G是Gram matrix, f s ( , f c ) f_s(,f_c) fs(,fc)表示从预训练的VGG-19的s(,c)层提取的特征图。

代码损失Lcode

代码损失 L c o d e L_{code} Lcode用于控制生成的QR码的内容,使用SS层(采样-模拟层),一个虚拟的QR码阅读器,模拟QR码阅读器的采样过程。

模拟层

在用于解码二维码的Goole ZXing中,二维码阅读器对每个模块的中心像素(二维码中的黑色和白色方块)进行采样和解码。

当QR码被QR码阅读器实际读取时,居住在坐标(i,j)、原点在每个模块中心的像素被采样的概率gMk(i,j)被认为遵循以下公式

g M k ( i , j ) ≡ 1 2 π σ 2 e − i 2 + j 2 2 σ 2 g_{M_{k}{(i,j)}}\equiv\,\frac{1}{2\pi\sigma^{2}}e^{-\frac{i^{2}+j^{2}}{2\sigma^{2}}} gMk(i,j)2πσ21e2σ2i2+j2

采样-模拟层使用上述方程来模拟生成的QR码被真正的QR码阅读器读取时的采样过程,从而提高QR码读取过程的稳健性。

具体来说,对于QR码中的每个模块 m − d i s − m m−dis−m mdism(每个模块有 a − d i s − a a−dis−a adisa像素),以核大小a、跨度a和填充0进行卷积运算,并输出 m − d i s − m m−dis−m mdism的特征图 F = l s S ( Q ) F=l_sS(Q) F=lsS(Q)

基于这个特征图 F = l s S ( Q ) F=l_sS(Q) F=lsS(Q) g M k ( i , j ) gM_{k(i,j)} gMk(i,j),对应于模块 M k M_k Mk的位 F M k F_{Mk} FMk由以下公式给出

F M k = s u m ( i , j ) ∈ M k g M k ( i , j ) ⋅ Q M k ( i , j ) F_{M_{k}}=\,s u m_{(i,j)\in M_{k}}g_{M_{k}(i,j)}\cdot Q_{M_{k}(i,j)} FMk=sum(i,j)MkgMk(i,j)QMk(i,j)

考虑FMk来模拟当QR码被QR码阅读器实际读取时,每个模块是否会被解码为0或1。

代码损失

代码损失 L c o d e L_{code} Lcode被计算为对应于QR码Q的每个模块 M k / i n Q M_k/inQ Mk/inQ的子码损失 L c o d e M K L_{code}^{MK} LcodeMK之和。

L c o d e = s u m M k i n Q L c o d e M k L_{c o d e}=s u m_{M_{k}i n Q}L_{c o d e}^{M_{k}} Lcode=sumMkinQLcodeMk其中 L c o d e M k L^{Mk}_{code} LcodeMk由以下公式给出。

L c o l e M k = K M k ⋅ ∣ ∣ t e x t i t M M k − F M k ∣ ∣ {\cal L}_{c o l e}^{M_{k}}=K_{M_{k}}\cdot\left|\left|t e x t i t{\cal M}_{M_{k}}-F_{M_{k}}\right|\right| LcoleMk=KMktextitMMkFMk

其中textitM是一个m×m矩阵,代表目标QR码以及每个模块是否应该为0或1。而K是由下面描述的竞争机制计算的激活图。

竞争机制

通过控制激活图K,竞争机制决定是优先考虑生成的QR码的视觉质量( L s t y l e , L c o n t e n t L_{style},L_{content} Lstyle,Lcontent),还是优先考虑QR码是否能被QR码阅读器准确读取( L c o d e L_{code} Lcode)进行优化。

这种竞争机制的管道如下图所示。

具体来说,当虚拟二维码阅读器RQR读取二维码Q时,如果模块Mk是正确的,激活图K为0,如果它是错误的,则为1。

通过采用这样的竞争机制,通过优先优化错误模块的Lcode和正确模块的Lstyle,Lcontent,适当地保留了图像的质量和QR码阅读的稳健性。读取QR码时的稳健性。

虚拟QR码阅读器 R Q R R_{QR} RQR

当一个普通的二维码阅读器读取一个二维码Q时,它被转换成灰度,并根据每个模块的值进行二进制化,如下所示:

这里,T是判断一个模块是黑是白的阈值。

另一方面,当用虚拟二维码阅读器读取二维码Q时,对每个模块 M k M_k Mk进行以下二值化。

其中 T b , T w T_b,T_w Tb,Tw分别是判断模块是黑色还是白色的阈值(如果模块 M k M_k Mk是黑色的( t e x t i t M M k = 0 textitM_{Mk}=0 textitMMk=0),阈值为 T b T_b Tb,如果相反则为 T w T_w Tw)。

换句话说,根据每个模块的理想值( M M k M_{Mk} MMk)使用不同的阈值,每个模块的值比实际的二维码阅读更严格地被分辨出来。

在这种情况下,引入了一个参数 e t a = ∣ T − T b ∣ T = ∣ T w − T ∣ ( 255 − T ) e t a={\frac{\vert T-T_{b}\vert}{T}}={\frac{\vert T_{w}-T\vert}{(255-T)}} eta=TTTb=(255T)TwT来表示QR码读取的稳健性。通过设置这个参数eta,可以在图像的质量和QR码读取的稳健性之间进行权衡。

基于上述,损失函数根据上述管道进行优化,并对生成的QR码进行迭代更新。

实验结果

实验设置

关于实验中使用的数据集,内容图像数据集包括100张512x512的图像(肖像、卡通、风景、动物、标志等),风格图像数据集包括30张代表不同风格的图像。

实验在NVIDIA Tesla V100 GPU上进行,超参数设置为 λ 1 = 1 0 1 5 , λ 2 = 1 0 7 , λ 3 = 1 0 2 0 λ_1=10_15,λ_2=10^7,λ_3=10^20 λ1=1015,λ2=107,λ3=1020,学习率为0.001,鲁棒参数 η = 0.6 η=0.6 η=0.6

生成的QR码的质量

与现有方法的比较,首先,与现有的NST(神经风格转移)技术或二维码生成方法的比较结果如下

将Ours与其他方法相比较,生成结果的质量比现有的NST实例退化得更少,而且与现有的艺术风格的QR码生成方法相比,不会产生大量的点状噪声。

对于重量参数λ在重量参数中,改变lambda2的含量损失的结果显示如下。

从图中可以看出,通过改变权重参数,可以控制生成的图像。

二维码阅读的稳健性

在下面的实验中,我们将验证所生成的QR码的鲁棒性,以便被真正的应用所读取。

对稳健性的定性分析

在下面的图片中,显示了实际生成的QR码的一部分的放大图。

如果在对任何生成的图像进行二进制化处理后观察每个模块的中心(二进制结果中的蓝色和红色圆圈),你\会发现每个模块的黑白区域都被很好地分开,采样后的结果与理想结果相同。

因此,生成的二维码可以被普通的二维码阅读器稳健地读取。

对于表示稳健性的参数eta来说

改变稳健性参数eta的结果如下。

其中,(a)显示了生成的图像,(b)部分图像的放大,(c)误差模块和(d)每个损失的大小。

一般来说,增加/eta会增加编码损失,提高鲁棒性,但会降低图像质量。另一方面,较小的eta会在早期收敛为零,提高了图像质量,但降低了鲁棒性。

成功阅读的概率

生成的图像以三种尺寸(3厘米×3厘米、5厘米×5厘米和7厘米×7厘米)显示在屏幕上,扫描距离为20厘米,其结果显示如下。

该表显示了使用每个移动设备对30个QR码进行50次扫描的平均成功次数(在3秒内成功解码被视为成功扫描)。

总的来说,它显示了至少96%的成功率,这表明所提出的方法足够强大,可以在实际应用中发挥作用。(即使在扫描失败的情况下,读取似乎也是成功的,尽管它需要3秒钟以上的时间来完成)。)

距离和角度对阅读的影响

下图显示了改变eta时的结果,并与改变距离和角度时的现有方法进行了比较。

作为比较的结果,对于0.6,所提出的方法的稳健性等于或略逊于现有的方法,这意味着它的稳健性足以在实践中得到应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/825253.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图像生成模型浅析(Stable Diffusion、DALL-E、Imagen)

目录 前言1. 速览图像生成模型1.1 VAE1.2 Flow-based Model1.3 Diffusion Model1.4 GAN1.5 对比速览 2. Diffusion Model3. Stable Diffusion3.1 Text Encoder3.2 Decoder3.3 Generation Model 总结参考 前言 简单学习下图像生成模型的相关知识🤗 以下内容来自于李宏…

链表传一级指针以及leetcode做题有感

上个文章说要传二级指针,经过一段时间的学习之后才知道可以传一级指针: 之所以要传二级指针,是要改变一级指针的值,也就是把头节点的指针改变,如图: 从左边到右边,头指针 一级指针plist 的值发…

深入理解Transformer技术原理 | 得物技术

谷歌在2017年发布Transformer架构的论文时,论文的标题是:Attention Is All You Need。重点说明了这个架构是基于注意力机制的。 一、什么是注意力机制 在深入了解Transformer的架构原理之前,我们首先要了解下,什么是注意力机制。…

vulfocus靶场redis 未授权访问漏洞之CNVD-2015-07557

目标系统的权限不够redis用户无法写计划任务和公钥,而且也没有开放ssh端口。 主从复制getshell,写入恶意的so文件达到执行系统命令的目的。 github上有一键可以利用的脚本 https://github.com/n0b0dyCN/redis-rogue-server.git 利用条件:需…

逆向案例二十八——红某点集登录接口逆向序

网址:aHR0cHM6Ly93d3cuaHJkanl1bi5jb20vIy9sb2dpbj9yZWRpcmVjdD0lMkZyZWFsVGltZUxpdmluZw 登录接口,发现两个参数加密,分别是pwd和sig,t很明显是时间戳。 观察pwd,发现很像md5加密,我输入的密码是123456,在在线加密网…

day81 session会话 文件上传

知识点: session 文件上传 一 session 1)session:会话 在服务器端存储信息 指客户与服务器的会话 当用户通过浏览器访问服务器的某个页面时,在服务器开辟一个内存空间session 每个session 有唯一的id 2)session过期 …

C——文件操作

1.前言 为什么要使用文件呢? 文件是储存在电脑的磁盘中的,如果没有文件,我们写程序的数据就会存储在电脑的内存中,程序退出,操作系统就会收回内存,数据就丢失了等再次运行程序的时候,是看不到…

【春秋云镜】CVE-2023-43291 emlog SQL注入

靶场介绍 emlog是一款轻量级博客及CMS建站系统,在emlog pro v.2.1.15及更早版本中的不受信任数据反序列化允许远程攻击者通过cache.php组件执行SQL语句。 不感兴趣的可以直接拉到最后面,直接获取flag 备注:没有通过sql注入获取到flag&…

汇编语言——将DX,AX组成的32位数逻辑左移3位

data segment data ends stack segment stacktop label worddw 100 dup (?) stack ends code segmentassume cs:code,ds:data,ss:stack main proc farmov ax,datamov ds,axmov ax,stackmov ss,axlea sp,top;0000 0001 1100 1010 | 0000 0010 0001 1111;逻辑左移三位后&#xf…

基于SpringBoot框架的智慧食堂

采用技术 基于SpringBoot框架实现的web的智慧社区系统的设计与实现~ 开发语言:Java 数据库:MySQL 技术:SpringBootMyBatis 工具:IDEA/Ecilpse、Navicat、Maven 页面展示效果 系统功能 系统首页 用户注册页面 菜品信息页面 …

Android 性能优化(七):APK安装包体积优化

包体积优化重要性 移动 App 特别关注投放转化率指标,而 App 包体积是影响用户新增的重要因素,而 App 的包体积又是影响投放转化率的重要因素。 Google 2016 年公布的研究报告显示,包体积每上升 6MB 就会带来下载转化率降低 1%, …

直方图与核密度估计

技术背景 直方图是一种经常被用于统计的图形表达形式,简单来说它的功能就是用一系列的样本数据,去分析样本的分布规律。而直方图跟核密度估计(Kernel Density Estimation,KDE)方法的主要差别在于,直方图得到的是一个离散化的统计分…

【全开源】多功能完美运营版商城 虚拟商品全功能商城 全能商城小程序 智慧商城系统 全品类百货商城

内容目录 一、详细介绍二、效果展示1.部分代码2.效果图展示 三、学习资料下载 一、详细介绍 完美运营版商城/拼团/团购/秒杀/积分/砍价/实物商品/虚拟商品等全功能商城 干干净净 没有一丝多余收据 还没过手其他站 还没乱七八走的广告和后门 后台可以自由拖曳修改前端UI页面 …

Aigtek功率放大器的使用方法有哪些

功率放大器是一种将小信号放大为大信号的电子设备,广泛应用于无线通信、音频系统、雷达等领域。在使用功率放大器时,需要注意以下几个方面: 电源供应:功率放大器需要提供稳定的电源供应以保证正常工作。通常情况下,功率…

正式发布的Spring AI,能让Java喝上AI赛道的汤吗

作者:鱼仔 博客首页: https://codeease.top 公众号:Java鱼仔 前言 最近几年AI发展实在太快了,仿佛只要半年没关注,一个新的大模型所产生的效果就能超越你的想象。Java在AI这条路上一直没什么好的发展,不过Spring最近出来了一个新的模块叫做S…

[Linux][进程间通信][一][匿名管道][命名管道]详细解读

目录 0.进程间通信?1.进程间通信目的2.进程间通信分类3.进程间通信的本质理解 1.什么是管道?2.匿名管道1.认识函数2.如何让不同的进程,看到同一份资源?3.用fork来共享管道原理4.站在文件描述符角度 -- 深刻理解管道5.站在内核角度…

目标检测——食品饮料数据集

一、重要性及意义 对食品和饮料进行目标检测的重要性和意义体现在多个方面: 商业应用与市场分析:目标检测技术在食品和饮料行业有着广泛的应用前景。通过对超市货架、餐馆菜单或广告海报中的食品和饮料进行自动识别和计数,商家可以获取关于产…

【微服务】spring状态机模式使用详解

一、前言 在很多系统中,通常会涉及到某个业务需要进行各种状态的切换操作,例如在审批流程场景下,某个审批的向下流转需要依赖于上一个状态的结束,再比如电商购物场景中,一个订单的生命周期往往伴随着不同的状态,比如待支付,支付完成,已发货等等,状态的存在,让一个业…

登录解析(后端)

调试登录接口 进入实现类可以有 验证码校验 登录前置校验 用户验证 验证码校验 通过uuid获取redis 中存储的验证码信息,获取后对用户填写的验证码数据进行校验比对 用户验证 1.进入控制器的 /login 方法 2.进入security账号鉴权功能,经过jar内的流…

HTML:Form表单控件主要标签及属性。name属性,value属性,id属性详解。表单内容的传递流程,get和post数据传递样式。表单数据传递实例

form表单 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head> &…