arm 作业 24/4/17

1、主机向从机发送多个字节的数据

主机发送起始信号

主机发送8bit从机地址+1bit写标志(0)

从机回应应答信号

主机发送8bit从机的寄存器地址

从机回应应答信号

主机发送8bit数据

从机回应应答

主机发送8bit数据

从机回应应答

…………

主机发起终止信号

2、主机读取多个字节的数据

主机发起起始信号

主机发送7bit从机地址+1bit写标志

从机回应应答信号

主机发起一个重复的起始信号

主机发送7bit从机地址+1bit读标志

从机回应应答信号

从机发送8bit数据

主机回应应答信号

从机发送8bit数据

…………

主机回应非应答信号

主机发起终止信号

3、si7006.h

#ifndef __SI7006_H__
#define __SI7006_H__#include "iic.h"
void delay_ms(int ms);
void si7006_init();
unsigned short si7006_read_hum();
short si7006_read_tem();#endif

si7006.c

#include "si7006.h"void delay_ms(int ms)
{int i,j;for(i=0;i<ms;i++){for(j=0;j<2000;j++){}}
}void si7006_init()
{//发送起始信号i2c_start();//发送7bit从机地址和写标志位   0x80i2c_write_byte(0x80);//等待从机应答i2c_wait_ack();//发送寄存器地址0xe6i2c_write_byte(0xe6);//等待从机应答i2c_wait_ack();//向从机发送数据0x3ai2c_write_byte(0x3a);//等待从机应答i2c_wait_ack();//发送终止信号i2c_stop();
}unsigned short si7006_read_hum()
{//主机发起起始信号i2c_start();//主机发送7位从机地址+1位写标志i2c_write_byte(0x80);//等待从机应答i2c_wait_ack(); //主机发送8位寄存器地址i2c_write_byte(0xe5);//等待从机应答if(i2c_wait_ack()!=0){return;}//主机发起重复起始信号i2c_start();//主机发送7位从机地址+1位读标志  0x81i2c_write_byte(0x81);//等待从机应答if(i2c_wait_ack()!=0){return;}//延时等待从机测量数据delay_ms(100);//读取湿度高8位数据  hum_hunsigned short hum_h=i2c_read_byte(0);//发送应答信号i2c_ack();//读取湿度低8位数据     hum_lunsigned short hum_l=i2c_read_byte(1);//发起非应答信号i2c_nack();//发起终止信号i2c_stop();//合并高、低8位信号unsigned short hum;hum=hum_h<<8|hum_l;return hum;
}short si7006_read_tem()
{//主机发起起始信号i2c_start();//主机发送7位从机地址+1位写标志i2c_write_byte(0x80);//等待从机应答i2c_wait_ack(); //主机发送8位寄存器地址i2c_write_byte(0xe3);//等待从机应答if(i2c_wait_ack()!=0){return;}//主机发起重复起始信号i2c_start();//主机发送7位从机地址+1位读标志  0x81i2c_write_byte(0x81);//等待从机应答if(i2c_wait_ack()!=0){return;}//延时等待从机测量数据delay_ms(100);//读取湿度高8位数据  hum_hshort tem_h=i2c_read_byte(0);//发送应答信号i2c_ack();//读取湿度低8位数据     hum_lshort tem_l=i2c_read_byte(1);//发起非应答信号i2c_nack();//发起终止信号i2c_stop();//合并高、低8位信号short tem;tem=tem_h<<8|tem_l;return tem;
}

main.c

#include "gpio.h"//延时函数#include "si7006.h"int main(){i2c_init();si7006_init();unsigned short hum;short tem;while(1){//读取温度和湿度hum=si7006_read_hum();tem=si7006_read_tem();//计算温度湿度数据hum=hum*125/65536-6;tem=tem*175.72/65536-46.85;printf("hum:%d\n",hum);printf("tem:%d\n",tem);delay_ms(1000);}return 0;}

icc.h

#ifndef __IIC_H__
#define __IIC_H__
#include "stm32mp1xx_gpio.h"
#include "stm32mp1xx_rcc.h"/* 通过程序模拟实现I2C总线的时序和协议* GPIOF ---> AHB4* I2C1_SCL ---> PF14* I2C1_SDA ---> PF15** */#define SET_SDA_OUT     do{GPIOF->MODER &= (~(0x3 << 30)); \GPIOF->MODER |= (0x1 << 30);}while(0)#define SET_SDA_IN      do{GPIOF->MODER &= (~(0x3 << 30));}while(0)#define I2C_SCL_H       do{GPIOF->BSRR |= (0x1 << 14);}while(0)
#define I2C_SCL_L       do{GPIOF->BRR |= (0x1 << 14);}while(0)#define I2C_SDA_H       do{GPIOF->BSRR |= (0x1 << 15);}while(0)
#define I2C_SDA_L       do{GPIOF->BRR |= (0x1 << 15);}while(0)#define I2C_SDA_READ    (GPIOF->IDR & (0x1 << 15))void delay_us(void);//微秒延时
void delay(int ms);
void i2c_init(void);//初始化
void i2c_start(void);//起始信号
void i2c_stop(void);//终止信号
void i2c_write_byte(unsigned char  dat);//写一个字节数据
unsigned char i2c_read_byte(unsigned char ack);//读取一个字节数据
unsigned char i2c_wait_ack(void);       //等待应答信号
void i2c_ack(void);//发送应答信号
void i2c_nack(void);//发送非应答信号#endif 

icc.c

#include "iic.h"extern void printf(const char* fmt, ...);
/** 函数名 : delay_us* 函数功能:延时函数* 函数参数:无* 函数返回值:无* */
void delay_us(void)  //微秒级延时
{unsigned int i = 2000;while(i--);
}
/** 函数名 : i2c_init* 函数功能: i2C总线引脚的初始化, 通用输出,推挽输出,输出速度,* 函数参数:无* 函数返回值:无* */
void i2c_init(void)
{// 使能GPIOF端口的时钟RCC->MP_AHB4ENSETR |= (0x1 << 5);// 设置PF14,PF15引脚为通用的输出功能GPIOF->MODER &= (~(0xF << 28));GPIOF->MODER |= (0x5 << 28);// 设置PF14, PF15引脚为推挽输出GPIOF->OTYPER &= (~(0x3 << 14));// 设置PF14, PF15引脚为高速输出GPIOF->OSPEEDR |= (0xF << 28);// 设置PF14, PF15引脚的禁止上拉和下拉GPIOF->PUPDR &= (~(0xF << 28));// 空闲状态SDA和SCL拉高 I2C_SCL_H;I2C_SDA_H;
}/** 函数名:i2c_start* 函数功能:模拟i2c开始信号的时序* 函数参数:无* 函数返回值:无* */
void i2c_start(void)
{/** 开始信号:时钟在高电平期间,数据线从高到低的变化*     --------* SCL         \*              --------*     ----* SDA     \*          --------* */   //确保SDA是输出状态 PF15输出SET_SDA_OUT;// 空闲状态SDA和SCL拉高 I2C_SCL_H;I2C_SDA_H;delay_us();//延时等待一段时间I2C_SDA_L;//数据线拉低delay_us();//延时等待一段时间I2C_SCL_L;//时钟线拉低,让总线处于占用状态
}/** 函数名:i2c_stop* 函数功能:模拟i2c停止信号的时序* 函数参数:无* 函数返回值:无* */void i2c_stop(void)
{/** 停止信号 : 时钟在高电平期间,数据线从低到高的变化 *             ----------* SCL        /*    --------*    ---         -------* SDA   X       /*    --- -------* *///确保SDA是输出状态 PF15输出SET_SDA_OUT;//时钟线拉低I2C_SCL_L;//为了修改数据线的电平delay_us();//延时等待一段时间I2C_SDA_L;//数据线拉低delay_us();//延时等待一段时间//时钟线拉高I2C_SCL_H;delay_us();//延时等待一段时间I2C_SDA_H;//数据线拉高}/** 函数名: i2c_write_byte* 函数功能:主机向i2c总线上的从设备写8bits数据* 函数参数:dat : 等待发送的字节数据* 函数返回值: 无* */void i2c_write_byte(unsigned char dat)
{  /** 数据信号:时钟在低电平期间,发送器向数据线上写入数据*          时钟在高电平期间,接收器从数据线上读取数据 *      ----          --------*  SCL     \        /        \*           --------          --------*      -------- ------------------ ---*  SDA         X                  X*      -------- ------------------ ---**      先发送高位在发送低位 * *///确保SDA是输出状态 PF15输出SET_SDA_OUT;unsigned int i;for(i=0;i<8;i++){//时钟线拉低I2C_SCL_L;delay_us();//延时//0X3A->0011 1010   0X80->10000000if(dat&0X80)//最高位为1{//发送1I2C_SDA_H;}else  //最高位为0{I2C_SDA_L;//发送0}delay_us();//延时//时钟线拉高,接收器接收I2C_SCL_H;delay_us();//延时,用于等待接收器接收数据delay_us();//延时//将数据左移一位,让原来第6位变为第7位dat = dat<<1;}}/** 函数名:i2c_read_byte* 函数功能: 主机从i2c总线上的从设备读8bits数据, *          主机发送一个应答或者非应答信号* 函数参数: 0 : 应答信号   1 : 非应答信号* 函数返回值:读到的有效数据** */
unsigned char i2c_read_byte(unsigned char ack)
{/** 数据信号:时钟在低电平期间,发送器向数据线上写入数据*          时钟在高电平期间,接收器从数据线上读取数据 *      ----          --------*  SCL     \        /        \*           --------          --------*      -------- ------------------ ---*  SDA         X                  X*      -------- ------------------ ---**      先接收高位, 在接收低位 * */unsigned int i;unsigned char dat;//保存接受的数据//将数据线设置为输入SET_SDA_IN;for(i=0;i<8;i++){//先把时钟线拉低,等一段时间,保证发送器发送完毕数据I2C_SCL_L;delay_us();delay_us();//保证发送器发送完数据//时钟线拉高,读取数据I2C_SCL_H;delay_us();dat=dat<<1;//数值左移 一定要先左移在赋值,不然数据会溢出if(I2C_SDA_READ)//pf15管脚得到了一个高电平输入{dat |=1; //0000 0110}else{dat &=(~0X1);}delay_us();}if(ack){i2c_nack();//发送非应答信号,不再接收下一次数据}else{i2c_ack();//发送应答信号 }return dat;//将读取到的数据返回
}
/** 函数名: i2c_wait_ack* 函数功能: 主机作为发送器时,等待接收器返回的应答信号* 函数参数:无* 函数返回值:*                  0:接收到的应答信号*                  1:接收到的非应答信号* */
unsigned char i2c_wait_ack(void)
{/** 主机发送一个字节之后,从机给主机返回一个应答信号**                   -----------* SCL              /   M:读    \*     -------------             --------*     --- ---- --------------------* SDA    X    X*     ---      --------------------*     主  释   从机    主机*     机  放   向数据  读数据线*         总   线写    上的数据*         线   数据* */   //时钟线拉低,接收器可以发送信号I2C_SCL_L;I2C_SDA_H;//先把数据线拉高,当接收器回应应答信号时,数据线会拉低delay_us();SET_SDA_IN;//设置数据线为输入delay_us();//等待从机响应delay_us();I2C_SCL_H;//用于读取数据线数据if(I2C_SDA_READ)//PF15得到一个高电平输入,收到非应答信号return 1;I2C_SCL_L;//时钟线拉低,让数据线处于占用状态return 0;} 
/** 函数名: iic_ack* 函数功能: 主机作为接收器时,给发送器发送应答信号* 函数参数:无* 函数返回值:无* */
void i2c_ack(void)
{/*            --------* SCL       /        \*    -------          ------*    ---* SDA   X *    --- -------------* *///保证数据线是输出SET_SDA_OUT;I2C_SCL_L;//拉低时钟线delay_us();I2C_SDA_L;//数据线拉低,表示应答信号delay_us();I2C_SCL_H;//时钟线拉高,等待发送器读取应答信号delay_us();//让从机读取我们当前的回应delay_us();I2C_SCL_L;//数据线处于占用状态,发送器发送下一次数据}
/** 函数名: iic_nack* 函数功能: 主机作为接收器时,给发送器发送非应答信号* 函数参数:无* 函数返回值:无* */
void i2c_nack(void)
{/*            --------* SCL       /        \*    -------          ------*    --- ---------------* SDA   X *    --- * */   //保证数据线是输出SET_SDA_OUT;I2C_SCL_L;//拉低时钟线delay_us();I2C_SDA_H;//数据线拉高,表示非应答信号delay_us();I2C_SCL_H;//时钟线拉高,等待发送器读取应答信号delay_us();delay_us();I2C_SCL_L;//数据线处于占用状态,发送器发送下一次数据
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/824562.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Pytorch】Conv1d

conv1d 先看看官方文档 再来个简单的例子 import torch import numpy as np import torch.nn as nndata np.arange(1, 13).reshape([1, 4, 3]) data torch.tensor(data, dtypetorch.float) print("[data]:\n", data) conv nn.Conv1d(in_channels4, out_channels1…

二叉树前序遍历​​​​​​​到底部为何会返回到顶部?函数调用栈

前序遍历是一种二叉树的遍历方式&#xff0c;其遍历顺序是先访问根节点&#xff0c;然后递归地遍历左子树&#xff0c;最后递归地遍历右子树。具体来说&#xff0c;前序遍历的顺序是根节点->左子树->右子树。 前序遍历到底部为何会返回到顶部是因为在进行递归遍历时&…

启明智显应用分享|基于ESP32-S3方案的SC01PLUS彩屏与chatgpt融合应用DEMO

今天将带大家真实体验科技与智慧的完美融合——SC01PLUS与ChatGPT的深度融合DEMO效果呈现。 彩屏的清晰显示与ChatGPT的精准回答&#xff0c;将为我们带来前所未有的便捷与高效。 SC01PLUS是启明智显基于ESP32-S3打造的一款3.5寸480*320分辨率的彩屏产品&#xff0c;您可以看…

32、模拟队列

模拟队列 题目描述 实现一个队列&#xff0c;队列初始为空&#xff0c;支持四种操作&#xff1a; (1) “push x” – 向队尾插入一个数x&#xff1b; (2) “pop” – 从队头弹出一个数&#xff1b; (3) “empty” – 判断队列是否为空&#xff1b; (4) “query” – 查询…

【Git】git命令大全(持续更新)

本文架构 0.描述git简介术语 1.常用命令2. 信息管理新建git库命令更改存在库设置获取当前库信息 3.工作空间相关将工作空间文件添加到缓存区&#xff08;增&#xff09;从工作空间中移除文件&#xff08;删&#xff09;撤销提交 4.远程仓库相关同步远程仓库分支 &#xff08;持…

高版本Android studio 使用Markdown无法预览(已解决)

目录 概述 解决方法 概述 本人升级Android studio 当前版本为Android Studio Jellyfish | 2023.3.1 RC 2导致Markdown无法预览。 我尝试了很多网上的方法都无法Markdown解决预览问题&#xff0c;包括升级插件、安装各种和Markdown相关的插件及使用“Choose Boot Java Runtim…

yolov5 自训练pt模型转onnx,再转rknn,并部署 注意事项

yolov5 部署到rk3588 教程来自 yolov5训练pt模型并转换为rknn模型&#xff0c;部署在RK3588开发板上——从训练到部署全过程_yolov5 rknn-CSDN博客 1.通过android studio 部署代码在rk3588板子上运行代码 项目来源 rknn-toolkit2/rknpu2/examples/rknn_yolov5_android_apk…

使用AWK进行文本处理

awk 的基本概念 awk 是一种强大的文本处理语言&#xff0c;广泛用于模式匹配和数据提取。这种编程语言设计用于对文本文件进行操作&#xff0c;尤其适用于格式化的文本&#xff0c;如 CSV 或空格分隔的表格数据。下面详细介绍 awk 的一些基本概念&#xff1a; 1. 记录和字段 …

一文了解OCI标准、runC、docker、contianerd、CRI的关系

docker和contanerd都是流行的容器运行时&#xff08;container runtime&#xff09;&#xff1b;想讲清楚他们两之间的关系&#xff0c;让我们先从runC和OCI规范说起。 一、OCI标准和runC 1、OCI&#xff08;open container initiative&#xff09; OCI是容器标准化组织为了…

利用动态规划优化10年投资回报:策略、证明与算法分析

利用动态规划优化10年投资回报&#xff1a;策略、证明与算法分析 a. 存在最优投资策略的证明b. 最优子结构性质的证明c. 最优投资策略规划算法设计d. 新限制条款下最优子结构性质的证明 在面对投资策略规划问题时&#xff0c;我们的目标是在10年后获得最大的回报。Amalgamated投…

Java上传文件到服务器

1、使用jsch <!--sftp文件上传--><dependency><groupId>com.jcraft</groupId><artifactId>jsch</artifactId><version>0.1.55</version></dependency> 2、配置类 package com.base.jsch;import lombok.Data; import o…

数据结构与算法-哈希表

哈希表 哈希表&#xff08;hash table&#xff09;&#xff0c;又称散列表&#xff0c;它通过建立键 key 与值 value 之间的映射&#xff0c;实现高效的元素查询。具体而言&#xff0c;我们向哈希表中输入一个键 key &#xff0c;则可以在 时间内获取对应的值 value 。 1.基础…

牛客 NC205 跳跃游戏(三)【中等 贪心 Java,Go,PHP】

题目 题目链接&#xff1a; https://www.nowcoder.com/practice/14abdfaf0ec4419cbc722decc709938b 思路 参考答案Java import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定&#xff0c;请勿修改&#xff0c;直接返回方法规定的值即可*** …

搜维尔科技:Manus Xsens Metagloves新一代手指捕捉

Manus Xsens Metagloves新一代手指捕捉 搜维尔科技&#xff1a;Manus Xsens Metagloves新一代手指捕捉

Go 单元测试之Mysql数据库集成测试

文章目录 一、 sqlmock介绍二、安装三、基本用法四、一个小案例五、Gorm 初始化注意点 一、 sqlmock介绍 sqlmock 是一个用于测试数据库交互的 Go 模拟库。它可以模拟 SQL 查询、插入、更新等操作&#xff0c;并且可以验证 SQL 语句的执行情况&#xff0c;非常适合用于单元测试…

基于SpringBoot+Vue社区医院服务平台(源码+文档+包运行)

一.系统概述 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了社区医院信息平台的开发全过程。通过分析社区医院信息平台管理的不足&#xff0c;创建了一个计算机管理社区医院信息平台的方案。文章介绍了社区医院信息…

如何在Linux CentOS部署宝塔面板并实现固定公网地址访问内网宝塔

文章目录 一、使用官网一键安装命令安装宝塔二、简单配置宝塔&#xff0c;内网穿透三、使用固定公网地址访问宝塔 宝塔面板作为建站运维工具&#xff0c;适合新手&#xff0c;简单好用。当我们在家里/公司搭建了宝塔&#xff0c;没有公网IP&#xff0c;但是想要在外也可以访问内…

QAnything部署Mac m1环境

本次安装时Qanything已经更新到了v1.3.3&#xff0c;支持纯python安装。安装过程比较简单&#xff0c;如下&#xff1a; QAnything/README_zh.md at qanything-python-v1.3.1 netease-youdao/QAnything GitHub 首先需要用Anaconda3创建隔离环境&#xff0c;简要说明下Anaco…

春藤实业启动SAP S/4HANA Cloud Public Edition项目,与工博科技携手数字化转型之路

3月11日&#xff0c;广东省春藤实业有限公司&#xff08;以下简称“春藤实业”&#xff09;SAP S/4HANA Cloud Public Edition&#xff08;以下简称“SAP ERP公有云”&#xff09;项目正式启动。春藤实业董事长陈董、联络协调项目经理慕总、内部推行项目经理陈总以及工博董事长…

SQLAlchemy批量更新

在 SQLAlchemy 1.4 版本中&#xff0c;批量更新仍然是一个常见的需求。虽然 SQLAlchemy 1.4 引入了一些新功能和改进&#xff0c;但基本的批量更新策略与之前的版本相似。以下是一些在 SQLAlchemy 1.4 中执行批量更新的常见方法&#xff1a; 1. 使用 update() 语句 你可以使用…